Advertisement

Infrared Problem, Higgs Phenomenon and Long Range Interactions

  • G. Morchio
  • F. Strocchi
Part of the NATO ASI Series book series (NSSB, volume 141)

Abstract

The infrared problem in QED is associated to the zero mass of the photon; at the level of (perturbative) Green’s functions the removal of the infrared cutoff (e.g. a fictitious photon mass µ) is completely under control even from a rigorous point of view1. The essential part of the problem occurs when one tries to remove the infrared cutoff in scattering amplitudes.

Keywords

Symmetry Breaking Coherent State Lorentz Group Coulomb Gauge Wightman Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Blanchard and R. Sénéor, Ann. Inst. H. Poincaré XXIII 147 (1975); see also the contributions by H.Epstein, V. Glaser, J.H. Löwenstein, P. Breitenlohner and D. Maison in “Renormalization Theory”, Proc. Int. School Math. Physics, Erice 1975 G. Velo and A.S. Wightman eds., D. Reidel (1976).Google Scholar
  2. 2.
    J.M. Jauch and F. Rohrlich, “The Theory of Photons and Electrons”, 2nd exp. ed., 2nd corr. print, Springer Verlag (1980).Google Scholar
  3. 3.
    J. Schwinger, Phys Rev. 76:790 (1949); see also the review by L.C. Maximon, Rev. Mod. Phys. 41: 193 (1969).Google Scholar
  4. 4.
    V. Chung, Phys. Rev. 140B: 1110 (1965).CrossRefGoogle Scholar
  5. 5.
    T.W. Kibble, Phys, Rev. 173:1527 (1968); 174:1882 (1968); 175: 1624 (1968).Google Scholar
  6. 6.
    D.R. Yennie, S.C. Frautschi and H. Suura, Ann. Phys.(N.Y.) 13: 379 (1961).CrossRefGoogle Scholar
  7. 7.
    F. Bloch and A. Nordsieck, Phys. Rev. 52: 54 (1937).CrossRefGoogle Scholar
  8. 8.
    G. Roepstorff, Comm. Math. Phys. 19: 301 (1970).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    P.P. Kulish and L.D. Fadde’ev, Teor. Matem. Fiz 4:153 (1970)[Theor, Math. Phys. 4:745 (1971)].Google Scholar
  10. P. Blanchard, Comm. Math. Phys. 15: 156 (1969)MathSciNetCrossRefGoogle Scholar
  11. 10.
    J.D. Dollard, Jour. Math. Phys. 5: 729 (1964).MathSciNetCrossRefGoogle Scholar
  12. 11.
    D. Zwanziger, Phys. Rev. D14:2570 (1976) and refs. therein.Google Scholar
  13. 12.
    R. Ferrari, L.E. Picasso and F. Strocchi, Comm. Math. Phys. 35:25 (1974); Nuovo Cim. A39: 1 (1977).Google Scholar
  14. 13.
    F. Strocchi, Gauss’ law in local quantum field theory in: “Field Theory, Quantization and Statistical Physics”,ed. E. Tirapegui, D. Reidel (1981).Google Scholar
  15. 14.
    F. Strocchi and A.S. Wightman, Journ. Math. Phys. 15: 2198 (1974).MathSciNetCrossRefGoogle Scholar
  16. 15.
    S. Doplicher, R. Haag and J.E. Roberts, Comm. Math. Phys. 23:199 (1971); 35: 49 (1974).Google Scholar
  17. 16.
    D. Buchholz and K. Fredenhagen, Comm. Math. Phys. 84: 1 (1982).MathSciNetMATHCrossRefGoogle Scholar
  18. 17.
    For a detailed account see e.g. R. Jost, in: “The General Theory of Quantized Fields”, Am. Math. Soc. (1965) and K. Hepp, in: “Brandeis Lectures 1965”, Vol. I, M. Chrétien and S. Deser eds., Gordon and Breach (1966).Google Scholar
  19. 18.
    D. Buchholz, Comm. Math. Phys. 42:269 (1975); 52: 147 (1977).Google Scholar
  20. 19.
    D. Buchholz, Comm. Math. Phys. 85: 49 (1982).MathSciNetMATHCrossRefGoogle Scholar
  21. 20.
    J. Fröhlich, G. Morchio and F. Strocchi, Ann. Phys. (N.Y.) 119: 241 (1979).CrossRefGoogle Scholar
  22. 21.
    J. Frohlich, G. Morchio and F. Strocchi, Phys. Lett. 89B: 61 (1979).Google Scholar
  23. 22.
    J. Frdhlich, Comm. Math. Phys. 54: 135 (1977)MathSciNetCrossRefGoogle Scholar
  24. W. Driessler and J. Frohlich, Ann. Inst. H. Poincaré 27A: 167 (1977).MathSciNetGoogle Scholar
  25. 23.
    H.J. Borchers, R. Haag and B. Schroer, Nuovo Cim. 29: 148 (1963).MathSciNetMATHCrossRefGoogle Scholar
  26. 24.
    J. Dixmier,“Les Algèbres d’operateurs dans l’espace Hilbertien”, Paris Gauthier-Villars (1957).Google Scholar
  27. 25.
    H. Stapp, Phys. Rev. Lett. 50:467 (1983); Phys. Rev. D28: 1386 (1983).Google Scholar
  28. 26.
    B. Schroer, Fortschr. Physik 11: 1 (1963).MathSciNetCrossRefGoogle Scholar
  29. 27.
    N.N. Bogoliubov and D.V. Shirkov, “Introduction to the Theory of Quantized Fields”, 3rd ed. Interscience, Ch. 8 §46 (1980).Google Scholar
  30. 28.
    J. Tarski, Jour. Math. Phys. 7: 560 (1966).MathSciNetCrossRefGoogle Scholar
  31. 29.
    G. Morchio and F. Strocchi, Infrared problem in QED and electric charge renormalization, Ann. Phys. (in press).Google Scholar
  32. 30.
    G. Morchio and F. Strocchi, in preparation.Google Scholar
  33. 31.
    G. Morchio and F. Strocchi, Nucl. Phys. B211: 471; B232: 547 (1984).Google Scholar
  34. 32.
    P.A.M. Dirac, Can. J. Phys. 33: 650 (1955)MathSciNetMATHCrossRefGoogle Scholar
  35. O. Steinmann, Perturbative QED in Terms of Gauge Invariant Fields, Bielefeld preprint BI-TP 83/19Google Scholar
  36. E. D’Emilio and M. Mintchev, Fortschr. Physik 32: 473 (1984).MathSciNetCrossRefGoogle Scholar
  37. 33.
    G. Morchio and F. Strocchi, Ann. Inst. H. Poincaré XXIII, n. 3 251 (1980).MathSciNetGoogle Scholar
  38. 34.
    G.F. Dell’Antonio and S. Doplicher, Jour. Math. Phys. 8: 663 (1967)MathSciNetCrossRefGoogle Scholar
  39. J.M. Chaiken, Ann. Phys. (N.Y.) 42: 23 (1967).MathSciNetMATHCrossRefGoogle Scholar
  40. 35.
    K.M. Case and S.G. Gasiorowicz, Phys. Rev. 125: 1055 (1962).MathSciNetMATHCrossRefGoogle Scholar
  41. 36.
    V. Gribov, Nucl. Phys. B206: 103 (1982).MathSciNetCrossRefGoogle Scholar
  42. 37.
    G. Morchio and F. Strocchi, submitted for publication.Google Scholar
  43. 38.
    S. Coleman, Secret Symmetries,in:Erice Summer School 1973, A. Zichichi ed., Academic Press (1975).Google Scholar
  44. 39.
    F. Strocchi, Comm. Math. Phys. 56: 57 (1977)MathSciNetMATHCrossRefGoogle Scholar
  45. Gauss’ law in local quantum field theory, in: “Field Theory, Quantization and Statistical Physics”, E. Tirapegui ed., D. Reidel (1981).Google Scholar
  46. 40.
    T. Kennedy and C. King, Phys. Rev. Lett. 55: 776 (1985).CrossRefGoogle Scholar
  47. 41.
    J. Fröhlich, G. Morchio and F. Strocchi, Phys. Lett. 97B:249 (1980); Nucl. Phys. B190: 553 [FS3] (1981).Google Scholar
  48. 42.
    G. Morchio and F. Strocchi, Phys. Lett. 104B: 277 (1981).Google Scholar
  49. 43.
    S. Weinberg, Phys. Rev. D7: 1068 (1973).Google Scholar
  50. 44.
    M. Creutz and T,N. Tudron, Phys. Rev. D17: 2619 (1978).Google Scholar
  51. 45.
    See e.g. O. Brattelli and D.W. Robinson, “Operator Algebras and Quantum Statistical Mechanics,” Vol. I, Springer-Verlag (1979), pp. 396–397.Google Scholar
  52. 46.
    G. Morchio and F. Strocchi, Spontaneous breaking of the Galilei group and the plasmon energy spectrum, to be published in Ann. Phys.Google Scholar
  53. 47.
    J. Swieca, Goldstone theorem and related topics, in: “Cargése Lectures,” Vol. 4, Gordon and Breach (1970).Google Scholar
  54. 48.
    R.F. Streater, Spontaneously Broken Symmetries, in “Many Degrees of Freedom in Field Theory,” L. Streit ed., Plenum Press (1978).Google Scholar
  55. 49.
    G. Morchio and F. Strocchi, Comm. Math. Phys. 99: 153 (1985).MathSciNetCrossRefGoogle Scholar
  56. 50.
    J. Kogut and L. Susskind, Phys. Rev. D11: 3594 (1975).Google Scholar
  57. 51.
    T.W. Nibble, Proc. Int. Conf. Elementary Particles, Oxford 1965, Oxford University Press (1965).Google Scholar
  58. 52.
    R. Haag, Nuovo Cim. 25: 1078 (1962).MathSciNetCrossRefGoogle Scholar
  59. 53.
    R. Haag and D. Kastler, Jour. Math. Phys. 5: 848 (1964).MathSciNetMATHCrossRefGoogle Scholar
  60. 54.
    Ch. Gruber, J.L. Lebowitz and Ph. A. Martin, Jour. Chem. Phys. 75: 944 (1981)MathSciNetCrossRefGoogle Scholar
  61. J.L. Lebowitz and Ph. A. Martin, Phys. Rev. Lett. 54: 1506 (1985).MathSciNetCrossRefGoogle Scholar
  62. 55.
    O.E. Lanford, II and D. Ruelle, Comm. Math. Phys. 13: 194 (1969).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • G. Morchio
    • 1
  • F. Strocchi
    • 2
    • 3
  1. 1.Dipartimento di Fisica dell’UniversitàPisaItaly
  2. 2.International School for Advanced StudiesTriesteItaly
  3. 3.International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations