Particle Structure of Gauge Theories

  • Klaus Fredenhagen
Part of the NATO ASI Series book series (NSSB, volume 141)


Gauge theories are formulated in terms of gauge fields Aµ and matter fields ψ which are not directly connected with physical particles, although the use of notations like “quark” and “gluons” suggests such an interpretation. In fact, the structure of the set of particle states depends strongly on the dynamics, as you all know from the discussion on quark confinement, Higgs mechanism, charge screening and so on. A particular problem is the occurence of “charged” particles, i.e. particles which are separated from the vacuum by some superselection rule, the classical example being particles with half integer spin [1]. By the very definition of superselection rules there cannot exist an observable field which generates states of such a particle out of the vacuum.


Gauge Theory Wilson Loop Single Particle State Lattice Gauge Theory Charge Operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. C. Wick, E. P. Wigner, A. S. Wightman: Intrinsic parity of elementary particles. Phys. Rev. 88. 101 (1952)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    J. Fröhlich: New superselction sectors (“soliton states”) in two dimensional Bose quantum field models. Commun. Math. Phys. 47, 269 (1976)CrossRefGoogle Scholar
  3. 3.
    Steinmann: Ferturbative QED in terms of gauge invariant fields. Ann. Phys. (NY) 157, 232 (1984)MathSciNetCrossRefGoogle Scholar
  4. 4.
    F. Strocchi, A. S. Wightman: Proof of the charge superselection rule in local relativistic quantum field theory. Journ. Math. Phys. 15, 2198 (1974)MathSciNetCrossRefGoogle Scholar
  5. 5.
    G. Morchio, F. Strocchi: Infrared singularities, vacuum structure and pure phases in local quantum field theory. Ann. Inst. Henri Poin. XXXIII, 251 (1980)Google Scholar
  6. 6.
    R. Haag, D. Kastler: An algebraic approach to quantum field theory. Journ. Math. Phys. 5, 848 (1964)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bratteli, D. Robinson: Operator algebras and statistical mechanics I, II, Berlin, Heidelberg, New York: Springer 1981Google Scholar
  8. 8.
    H.-J. Borchers: On the vacuum state in quantum field theory II. Commun. Math. Phys. 1, 57 (1965)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    H.-J. Borchers: Energy and momentum as observables in quantum field theory. Commun. Math. Phys. 2, 49 (1966)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    G. Roepstorff: Coherent photon states and spectral condition. Commun. Math. Phys. 19, 301 (1970)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    A. Stoffel: Eigenschaften von Infrarotdarstellungen. Diplomarbeit Hamburg 1973 (unpublished)Google Scholar
  12. 12.
    J. Fröhlich, G. Morchio, F. Strocchi: Infrared problem and spontaneous breaking of the Lorentz group in QED. Phys. Lett. 89B, 61 (1979)Google Scholar
  13. 13.
    H.-J. Borchers, D. Buchholz: The energy momentum spectrum in local field theories with broken Lorentz symmetry. Commun. Math. Phys. 97, 169 (1985)MathSciNetCrossRefGoogle Scholar
  14. 14.
    H.-J. Borchers: Locality and covariance of the spectrum. Bielefeld University preprint (1984)Google Scholar
  15. 15.
    D. Buchholz, K. Fredenhagen: Locality and the structure of particle states. Commun. Math. Phys. 84, 1 (1982)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    D. Buchholz, K. Fredenhagen: Charge screening and mass spectrum in Abelian gauge theories: Nuc1. Phys. B154, 226 (1979)Google Scholar
  17. 17.
    B. Schroer: Infrateilchen in der Quantenfeldtheorie. Fortschr. Physik 11, 1 (1963)MathSciNetCrossRefGoogle Scholar
  18. 18.
    D. Buchholz: The physical state space of quantum electrodynamics. Commun. Math. Phys. 85, 49 (1982)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    J. A. Swieca: Charge screening and mass spectrum. Phys. Rev. D13, 312 (1976)CrossRefGoogle Scholar
  20. 20.
    S. Doplicher, R. Haag, J. E. Roberts: Local observables and particle statistics. Commun. Math. Phys. 23, 199 (1971) and 35, 49 (1974)Google Scholar
  21. 21.
    H.-J. Borchers: Local rings and the connection of spin with statistics. Commun. Math. Phys. 1, 281 (1965)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    K. Fredenhagen: On the existence of antiparticles. Commun. Math. Phys. 79, 141 (1981)MathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Doplicher, J. E. Roberts: Compact Lie groups associated with endomorphisms of C*-algebras. Bielefeld University preprint (1984)Google Scholar
  24. 24.
    J. J. Bisognano, E. H. Wichmann: On the duality condition for a hermitean scalar field. Journ. Math. Phys. 16, 985 (1975)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    F. Wegner: Duality in generalized Ising models and phase transitions without local order parameters. Journ. Math. Phys. 12, 2259 (1971)MathSciNetCrossRefGoogle Scholar
  26. 26.
    K. Fredenhagen, M. Marcu: Charged states in 2 gauge theories. Commun. Math. Phys. 92, 81 (1983)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    E. Fradkin, S. Shenker: Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D19, 3682 (1979)Google Scholar
  28. 28.
    K. Osterwalder, E. Seiler: Gauge field theories on a lattice. Ann. Phys. 110, 440 (1978)MathSciNetCrossRefGoogle Scholar
  29. 29.
    R. Marra, S. Miracle-Sole: On the statistical mechanics of the gauge invariant Ising model. Commun. Math. Phys. 67, 233 (1979)Google Scholar
  30. 30.
    I. Cioranescu, L. Zsido: Analytic generators for one-parameter groups. Tôhoku Math. J. 28, 327 (1976)MathSciNetMATHGoogle Scholar
  31. 31.
    K. Fredenhagen: On the existence of the real time evolution in Euclidean lattice gauge theories (to appear in Commun. Math. Phys.)Google Scholar
  32. 32.
    D. Ruelle: Statistical mechanics. Reading MA: Benjamin 1969MATHGoogle Scholar
  33. 33.
    K. Szlachânyi: Non-local charged fields and the confinement problem. Phys. Lett. 147B, 335 (1984)Google Scholar
  34. 34.
    K. Fredenhagen, M. Marcu: A confinement criterion for QCD with dynamical quarks. DESY 85–008 (preprint)Google Scholar
  35. 35.
    Th. Filk, K. Fredenhagen, M. Marcu: Order parameters for lattice gauge theories with matter fields. (to be published)Google Scholar
  36. 36.
    J. Bricmont, J. Fröhlich: An order parameter distinguishing between different phases of lattice gauge theories with matter fields. Phys. Lett. 122B, 73 (1983)MathSciNetGoogle Scholar
  37. 37.
    G. Mack, H. Meyer: A disorder parameter that tests for confinement in gauge theories with quark fields. Nucl. Phys. 2O0B, 249 (1982);Google Scholar
  38. H. Meyer-Ortmanns: The vortex free energy in the screening phase of the Z(2) Higgs model. Nucl. Phys. B225 FS 11, 115 (1984);CrossRefGoogle Scholar
  39. H. Meyer-Ortmanns: Unexpected behavior of an order parameter for lattice gauge theories with matter fields. Nucl. Phys. B23O FS 10, 31 (1984)CrossRefGoogle Scholar
  40. 38.
    J. Bricmont, J. Fröhlich: Defect free energies in lattice gauge theories with matter fields. Nucl. Phys. B23O FS 10, 407 (1984)CrossRefGoogle Scholar
  41. 39.
    J. Bricmont, J. Fröhlich: Statistical mechanical methods in particleGoogle Scholar
  42. structure analysis of lattice field theories. Nucl. Phys. B251 FS 13, 517 (1985) and Commun. Math. Phys. 98, 553 (1987)Google Scholar
  43. 40.
    R. S. Schor: Existence of glueballs in strongly coupled lattice-gauge theories. Nucl. Phys. B222 FS 8, 71 (1983)MathSciNetCrossRefGoogle Scholar
  44. 41.
    R. S. Schor: Excited glueball states on a lattice from first principles. Phys. Lett. 132B, 161 (1983)Google Scholar
  45. 42.
    R. S. Schor: Glueball spectroscopy in strongly coupled lattice gauge theories. Commun. Math. Phys. 92, 369 (1984)MathSciNetCrossRefGoogle Scholar
  46. 43.
    M. O’Caroll, G. Braga, R. S. Schor: Glueball mass spectrum and mass splitting in 2+1 strongly coupled lattice gauge theories. Commun. Math. Phys. 97, 429 (1985)CrossRefGoogle Scholar
  47. 44.
    M. O’Caroll, G. Braga: Analyticity properties and a convergent expansion for the glueball mass and dispersion curve of strongly coupled Euclidean 2+1 lattice gauge theories. Journ. Math. Phys. 25, 2741 (1984)CrossRefGoogle Scholar
  48. 45.
    R. Haag: Quantum field theories with composite particles and asymptotic behaviour. Phys. Rev. 112, 669 (1958)MathSciNetMATHCrossRefGoogle Scholar
  49. 46.
    D. Ruelle: On the asymptotic condition in quantum field theory. Hely. Phys. Acta 35, 147 (1962)MathSciNetMATHGoogle Scholar
  50. 47.
    Th. Filk, K. Fredenhagen, M. Marcu: A 2nd order phase transition in the 4 dimensional 2 Higgs theory. (to be published)Google Scholar
  51. 48.
    J. C. A. Barata: Sobre a relacao entre ausência de carga e “gap” de massa em teorias de gauge na rede. Thesis Sao Paulo 1985 (unpublished)Google Scholar
  52. 49.
    J. C. A. Barata, W. F. Wreszinski: Absence of charged states in the U(1) Higgs lattice gauge theory. (to appear in Commun. Math. Phys.)Google Scholar
  53. 50.
    D. C. Brydges, E. Seiler: Absence of screening in certain lattice gauge and plasma models. Princeton University preprint 1985Google Scholar
  54. 51.
    T. Kennedy, C. King: Symmetry breaking in the lattice Abelian Higgs model. Princeton University preprint 1985Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Klaus Fredenhagen
    • 1
  1. 1.II. Institut für Theoretische PhysikUniversität HamburgHamburg 50Germany

Personalised recommendations