Constructive Gauge Theory

  • T. Balaban
  • A. Jaffe
Part of the NATO ASI Series book series (NSSB, volume 141)


Here we provide some insight into mathematical methods to analyze quantized gauge theories. This approach is being used to establish existence as well as to prove properties of gauge field models. Up to now, only abelian gauge fields are known to exist, namely the U(1) Higgs model on ℝ2 and ℝ3 and electrodynamics on the tori T2 and T3. In these lectures we study infrared properties of some of these models. The non-Abelian gauge models are interesting for additional reasons: First, they have a natural geometric interpretation. Furthermore, because of asymptotic freedom, non-Abelian models have better local regularity properties than Abelian theories. Furthermore, they provide a rich analytic structure.


Gauge Theory Gauge Transformation Gauge Invariance Lattice Gauge Theory Unit Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Osterwalder, K. and Schrader, R., “Axioms for Euclidean Green’s functions, I, II”, Commun. Math. Phys. 31, 83–112 (1973); Commun. Math. Phys. 42, 281–305 (1975).Google Scholar
  2. Fröhlich, J., Osterwalder, K. and Seiler, E., “On virtual representation of symmetric spaces and their analytic continuation”, Ann. Math. 118, 461–489 (1983).MATHCrossRefGoogle Scholar
  3. 2.
    Glimm, J. and Jaffe, A., Quantum Physics, 2nd edition. New York: Springer-Verlag ( 1986 ). Collected Papers: Boston, Birkhäuser (1985).Google Scholar
  4. 3.
    Wilson, K.G., “Confinement of quarks”, Phys. Rev. D10, 2445–2459 (1974).Google Scholar
  5. Seiler, E., “Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics”, Lecture Notes in Physics, Vol. 159. Berlin, Heidelberg, New York: Springer-Verlag (1982).Google Scholar
  6. 4.
    Singer, I.M., “Some remarks on the Gribov ambiguity”, Commun. Math. Phys. 60, 7–12 (1978).MATHCrossRefGoogle Scholar
  7. 5.
    Osterwalder, K. and Seiler, E., “Gauge field theories on the lattice”, Ann. Phys. 110, 440–471 (1978).MathSciNetCrossRefGoogle Scholar
  8. 6.
    Glimm, J. and Jaffe, A., “Positivity of the (1)3 Hamiltonian”, Fort. Phys. 21, 327–376 (1973).MathSciNetCrossRefGoogle Scholar
  9. 7.
    Kandanoff, L., “The application of renormalization, group techniques to quarks and strings”, Rev. Mod. Phys. 49, 267–296 (1977).CrossRefGoogle Scholar
  10. Wilson, K.G., “Quantum chromodynamics on a lattice”, in Quantum Field Theory and Statistical Mechanics, pp. 143–172 (1976); Cargese Lectures, edited by M. Levy and P. Mitter, Plenum Press (1977).Google Scholar
  11. 8.
    Balaban, T., “Renormalization group methods in non-Abelian gauge theories”, Harvard University preprint HUTMP B134 (1984).Google Scholar
  12. Balaban, T., “Averaging operations for lattice gauge theories”, Commun. Math. Phys. 98, 17–52 (1985).MathSciNetMATHCrossRefGoogle Scholar
  13. 9.
    Federbush, P., “A phase cell approach to Yang-Mills theory III. Stability modified renormalization group transformation”, University of Michigan preprint (1984).Google Scholar
  14. 10.
    Abers, E., and Lee, B.W., “Gauge theories”, Phys. Rept. 9C, 1–141 (1973).CrossRefGoogle Scholar
  15. Faddeev, L.D. and Slavnov, A.A., Gauge Fields: Introduction to Quantum Theory, Reading, MA: Benjamin-Cummings Publishing Co. (1980).MATHGoogle Scholar
  16. 10.
    Cruetz, M., “Monte Carlo study of quantized SU(2) gauge theory”, Phys. Rev. 21, 2308–2315 (1980).Google Scholar
  17. Cruetz, M., Jacobs, L. and Rebbi, C., “Monte Carlo study of Abelian lattice gauge theories”, Phys. Rev. D20, 1915–1922 (1979).Google Scholar
  18. 12.
    Guth, A., “Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory”, Phys. Rev. D21, 2291–2307 (1980).MathSciNetCrossRefGoogle Scholar
  19. Fröhlich,J. and Spencer, T., “Massless phases and symmetry restoration in Abelian gauge theories and spin systems”, Commun. Math. Phys. 83, 411–454 (1982).CrossRefGoogle Scholar
  20. Göpfert, M. and Mack, G., “Proof of confinement of static quarks in three-dimensional U(1) lattice gauge theories for all values of the coupling constant”, Commun. Math. Phys. 82, 545–606 (1982).CrossRefGoogle Scholar
  21. 13.
    Israel, R.B. and Nappi, C.R., “Quark confinement in the two-dimensional lattice Higgs-Villain model”, Commun. Math. Phys. 64, 177–189 (1979).MathSciNetCrossRefGoogle Scholar
  22. Mack, G., “Confinement of static quarks in two-dimensional lattice gauge theories”, Commun. Math. Phys. 65, 91–96 (1979).MathSciNetCrossRefGoogle Scholar
  23. Balaban, T., Brydges, D., Imbrie, J. and Jaffe, A., “The mass gap for Higgs models on a unit lattice”, Ann. Phys. 158, 281–319 (1984).MATHCrossRefGoogle Scholar
  24. 14.
    Balaban, T., Imbrie, J. and Jaffe, A., “Renormalization of the Higgs Model: Minimizers, Propagators and the Stability of Mean Field Theory”, Commun. Math. Phys. 97, 299–330 (1985).MathSciNetMATHCrossRefGoogle Scholar
  25. 15.
    Balaban, T., “Propagators and renormalization transformations for lattice gauge theories, I”, Commun. Math. Phys. 95, 17–40 (1984).MathSciNetMATHCrossRefGoogle Scholar
  26. 16.
    Gawedzki, K. and Kupiainen, A., “Asymptotic freedom beyond perturbation theory” in Critical Phenomena, Random Systems, Gauge Theories (Les Houches 1984 ) Osterwalder, K. and Stora, R. (eds.); Amsterdam: North Holland, to be published (1985).Google Scholar
  27. 17.
    Balaban, T., “Renormalization group approach to lattice gauge field theories, I. Generation of effective actions in a small field approximation and a coupling constant renormalization”, Harvard University preprint HUTMP B189 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • T. Balaban
    • 1
  • A. Jaffe
    • 2
  1. 1.Department of MathematicsNortheastern UniversityBostonUSA
  2. 2.Harvard UniversityCambridgeUSA

Personalised recommendations