An Introduction to Anomalies

  • Luis Alvarez-Gaumé
Part of the NATO ASI Series book series (NSSB, volume 141)


These lectures are dedicated to the study of the recent progress and implications of anomalies in quantum field theory. In this introduction we would like to recapitulate some of the highlights in the history of the subject. In its original form,1 one considers a triangle diagram with two vector currents and an axial vector current. Requiring Bose symmetry and vector current conservation in the vector channels, one finds that the axial vector current is not conserved, leading to the breakdown of chiral symmetry in the presence of external gauge fields. The existence of this anomaly led to an understanding of π0 decay, and later on to the resolution of the U(1) problem2 in QCD. These anomalies correspond to the breakdown of global axial symmetries, and their existence does not jeopardize unitarity or renormalizability. More dangerous anomalies appear whenever chiral currents are coupled to gauge fields. For example, in four dimensions we can consider V-A currents coupled to gauge fields as in the standard Weinberg-Salam model, and compute the same triangle diagram with V-A currents on each vertex.3 Again one finds an anomaly, and unless the anomaly cancels after summing over all the fermion species, the theory will not be gauge invariant, implying a loss of renormalizability. If we recall the Feynman rules for non-Abelian gauge theories coupled to fermions in some representation Ta of the gauge group G, the anomaly for gauge currents is proportional to a purely group theoretic factor times a Feynman integral.


Gauge Group Line Bundle Gauge Transformation Dirac Operator Zero Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Adler, Phys. Rev. 177, 2426 (1964), and in Lectures on Elementary Particles and Quantum Field Theory, ed. S. Deser et al. ( M.I.T. Press, 1970 )Google Scholar
  2. J. Bell and R. Jackiw, Nuovo Cimento 60A, 47 (1969)CrossRefGoogle Scholar
  3. R. Jackiw, in Lectures on Current Algebra and Its Applications (Princeton Univ. Press, 1972 )Google Scholar
  4. S. L. Adler and W. Bardeen, Phys. Rev. 182, 1517 (1969)CrossRefGoogle Scholar
  5. W. A. Bardeen, Phys. Rev. 184, 1848 (1969)CrossRefGoogle Scholar
  6. R. W. Brown, C. C. Shi and B. L. Young, Phys. Rev. 186, 1491 (1969)CrossRefGoogle Scholar
  7. J. Wess and B. Zumino, Phys. Lett. 37B, 95 (1971)Google Scholar
  8. A. Zee, Phys. Rev. Lett. 29, 1198 (1972).CrossRefGoogle Scholar
  9. 2.
    J. Steinberger, Phys. Rev. 76, 1180 (1944)CrossRefGoogle Scholar
  10. J. Schwinger, Phys. Rev. 82, 664 (1951)MathSciNetMATHCrossRefGoogle Scholar
  11. L. Rosenberg, Phys. Rev. 129, 2786 (1963)MATHCrossRefGoogle Scholar
  12. R. Jackiw and K. Johnson, Phys. Rev. 182, 1459 (1969)CrossRefGoogle Scholar
  13. S. Adler and D. G. Boulware, Phys. Rev. 184, 1740 (1969)CrossRefGoogle Scholar
  14. S. L. Adler, B. W. Lee, S. B. Treiman and A. Zee, Phys. Rev. D4, 3497 (1971)CrossRefGoogle Scholar
  15. R. Aviv and A. Zee, Phys. Rev. D5, 2372 (1972)Google Scholar
  16. M. V. Terentiev, JETP Lett. 14, 140 (1971)Google Scholar
  17. A. M. Belavin, A. M. Polyakov, A. S. Schwarz and Yu. S. Tyupkin, Phys. Lett. 59B, 85 (1975)Google Scholar
  18. G. Hooft, Phys. Rev. Lett. 37, 8 (1976), Phys. Rev. D14, 3437 (1976)Google Scholar
  19. C. Callan, R. Dashen and D. J. Gross, Phys. Lett. 63B, 334 (1976)Google Scholar
  20. R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37, 172 (1976).CrossRefGoogle Scholar
  21. 3.
    D. J. Gross and R. Jackiw, Phys. Rev. D6, 477 (1972)CrossRefGoogle Scholar
  22. C. Bouchiat, J. Iliopoulos and Ph. Meyer, Phys. Lett. 38B, 519 (1972)Google Scholar
  23. H. Georgi and S. Glashow, Phys. Rev. D6, 429 (1972).CrossRefGoogle Scholar
  24. 4.
    P. H. Frampton and T. W. Kephart, Phys. Rev. Lett. 50, 1343, 1347 (1983)CrossRefGoogle Scholar
  25. P. K. Townsend and G. Sierra, Nucl. Phys. B222, 493 (1983)MathSciNetCrossRefGoogle Scholar
  26. B. Zumino, W. Y.-Shi and A. Zee, Nucl. Phys. B239, 477 (1984)CrossRefGoogle Scholar
  27. P. H. Frampton and T. W. Kephart, Phys. Rev. D28, 1010 (1983)Google Scholar
  28. P. H. Frampton, J. Preskill and H. V. Dam, Phys. Lett. 124B, 209 (1983).Google Scholar
  29. 5.
    For a review on GUT theories see for example, P. Langacker, Phys. Rep. 72, 185 (1981)Google Scholar
  30. A. Zee in Unity of Forces in the Universe, Vol. I,11, (World Scientific, 1982 ).Google Scholar
  31. 6.
    For a review on Kaluza-Klein theories and references to earlier literature, see A. Salam and J. Strathdee, Ann. of Phys. 141, 316 (1982)Google Scholar
  32. P. Van Nieuwenhuizen, “An Introduction to Simple Supergravity and the Kaluza-Klein Program” in Relativity Groups and Topology - II, Ed. R. Stora (North-Holland, 1985 ).Google Scholar
  33. 7.
    G. Hooft in Recent Developments in Gauge Theories“, Eds. G. Hooft et al. (Plenum Press, N.Y., 1980 )Google Scholar
  34. A. A. Anselm, JETP Lett. 32, 138 (1980)Google Scholar
  35. A. Zee, Phys. Lett. 95B, 290 (1980)Google Scholar
  36. Y. Frishman, A. Schwimmer, T. Banks and S. Yankielowicz, Nucl. Phys. B177, 157 (1981)CrossRefGoogle Scholar
  37. S. Coleman and B. Grossman, Nucl. Phys. B203, 205 (1982)MathSciNetCrossRefGoogle Scholar
  38. G. R. Farrar, Phys. Lett. 96B, 273 (1980)Google Scholar
  39. S. Weinberg, Phys. Lett. 102B, 401 (1981)Google Scholar
  40. C. H. Albright, Phys. Rev. D24, 1969 (1981)Google Scholar
  41. I. Bars, Phys. Lett. 109B, 73 (1982)Google Scholar
  42. T. Banks, S. Yankielowicz and A. Schwimmer, Phys. Lett. 96B, 67 (1980)Google Scholar
  43. A. Schwimmer, Nucl. Phys. B198, 269 (1982).MathSciNetCrossRefGoogle Scholar
  44. 8.
    G. Moore and P. Nelson, Phys. Rev. Lett. 53, 1519 (1984) and Comm. Math. Phys. 100, 83 (1985).Google Scholar
  45. 9.
    A. Manohar, G. Moore and P. Nelson, Phys. Lett. 152B, 68 (1985)Google Scholar
  46. L. Alvarez-Gaumê and P. Ginsparg, Nucl. Phys. B262, 439 (1985)CrossRefGoogle Scholar
  47. J. Bagger, D. Nemeschanski, S. Yankielowicz, SLAC-PUB-3588Google Scholar
  48. E. Cohen and E. Gomez, Nucl. Phys. B254, 235 (1985)MathSciNetCrossRefGoogle Scholar
  49. P. DiVecchia, S. Ferrara and L. Girardello, Phys. Lett. 151B, 199 (1985).Google Scholar
  50. 10.
    R. Delbourgo and A. Salam, Phys. Lett. 40B, 381 (1972)Google Scholar
  51. T. Eguchi and P. Freund, Phys. Rev. Lett. 37, 1251 (1976).MathSciNetCrossRefGoogle Scholar
  52. 11.
    L. Alvarez-Gaumê and E. Witten, Nucl. Phys. B234, 269 (1983).CrossRefGoogle Scholar
  53. 12.
    M. B. Green and J. H. Schwarz, Phys. Lett. 149B, 117 (1984).Google Scholar
  54. 13.
    M. B. Green, J. H. Schwarz and P. C. West, Nucl. Phys. B254, 377 (1984).MathSciNetGoogle Scholar
  55. 14.
    For some useful reviews of string theories before the construction of the heterotic string tm see J. Scherk, Rev. Mod. Phys. 47, 123 (1975)Google Scholar
  56. J. H. Schwarz, Phys. Rep. 89, 223 (1982)MathSciNetMATHCrossRefGoogle Scholar
  57. M. B. Green, Surveys in H.E.P. 3, 127 (1983)CrossRefGoogle Scholar
  58. L. Brink, “Superstrings”, Lectures at the 1984 Bonn Summer School on Supersymmetry, CERN preprint TH 4006/84.Google Scholar
  59. 15.
    M. F. Atiyah and I. M. Singer, Ann. of Math. 87, 485, 546 (1968), 93, 1, 119, 139 (1971)Google Scholar
  60. M. F. Atiyah and G. B. Segal, Ann. of Math. 87, 531 (1968).MathSciNetMATHCrossRefGoogle Scholar
  61. 16.
    M. F. Atiyah, V. I. Patodi and I. M. Singer, Math. Proc. Camb. Phil. Soc. 77, 43 (1975), 78, 405 (1975), 79, 71 (1976).Google Scholar
  62. 17.
    R. Jackiw. Nohl and C. Rebbi in Particles and Fields, Eds. D. Boch and A. Kamal ( Plenum Press, N.Y. 1978 )Google Scholar
  63. N. K. Nielsen, H. Römer, B. Schroer, Nucl. Phys. B136, 478 (1978)CrossRefGoogle Scholar
  64. for a recent review see R. Jackiw in Relativity Groups and Topology II, Eds. B. S. DeWitt and R. Stora (North Holland, 1984 ).Google Scholar
  65. 18.
    M. F. Atiyah and I. M. Singer in Proc. Nat. Acad. Sci. USA 81, 2597 (1984).Google Scholar
  66. 19.
    L. Alvarez-Gaumê and P. Ginsparg, Nucl. Phys. B243, 449 (1984).CrossRefGoogle Scholar
  67. 20.
    L. Alvarez-Gaumê and P. Ginsparg, Ann. of Phys. 161, 423 (1985).MATHCrossRefGoogle Scholar
  68. 21.
    O. Alvarez, I. M. Singer and B. Zumino, Comm. Math. Phys. 96, 409 (1984).MathSciNetMATHCrossRefGoogle Scholar
  69. 22.
    C. Gomez, Salamanca preprint (1984).Google Scholar
  70. 23.
    S. Goldberg, Curvature and Homology (Dover, N.Y., 1982 ).Google Scholar
  71. 24.
    T. Sumitani, UT-KOMABA 84–7 (1984).Google Scholar
  72. 25.
    J. Lott, Comm. Math. Phys. 93, 533 (1984).MathSciNetMATHCrossRefGoogle Scholar
  73. 26.
    R. Stora, Lecture at the 1983 Cargese Summer School, in Progress in Gauge Theory, Ed. G. ‘t Hooft et aZ. ( Plenum Press, N.Y., 1984 )Google Scholar
  74. B. Zumino, Lectures at the 1983 Les Houches Summer School, Relativity, Groups and Topology II, Eds. B. S. DeWitt and R. Stora (North Holland, 1984 )Google Scholar
  75. B. Zumino, Y. S. Wu and A. Zee, Nucl. Phys. B239, 477 (1984)MathSciNetCrossRefGoogle Scholar
  76. L. Baulieu, Nucl. Phys. B241, 557 (1984).MathSciNetCrossRefGoogle Scholar
  77. 27.
    J. Wess and B. Zumino, Phys. Lett. 37B, 95 (1971).Google Scholar
  78. 28.
    E. Witten, Nucl. Phys. B223, 422 (1983).MathSciNetCrossRefGoogle Scholar
  79. 29.
    L. D. Faddeev, Phys. Lett. 145B, 81 (1984)Google Scholar
  80. L. D. Faddeev and S. Shatashvili, Math. Phys. 60, 206 (1984).MathSciNetGoogle Scholar
  81. 30.
    B. Zumino, Nucl. Phys. B253, 477 (1985)MathSciNetCrossRefGoogle Scholar
  82. R. Jackiw, MIT preprint CTP1298, to appear in Comments in Nuclear and Particle Physics.Google Scholar
  83. 31.
    P. Nelson and L. Alvarez-Gaumê, Comm. Math. Phys. 99, 103 (1985).MathSciNetMATHCrossRefGoogle Scholar
  84. 32.
    I. M. Singer, MIT preprint, to appear in the Proceedings of the Conference in honor of E. Cartan, June 1984. E. Witten, Phys. Lett. 117B, 324 (1982), Comm. Math. Phys. 100, 197 (1985).Google Scholar
  85. 33.
    N. K. Nielsen, Nucl. Phys. B244, 499 (1984)CrossRefGoogle Scholar
  86. O. Piguet and K. Sibold, Nucl. Phys. B247, 484 (1984)CrossRefGoogle Scholar
  87. G. Girardi, R. Grimm and R. Stora, Annecy preprint LAPP-TH-130 (1985)Google Scholar
  88. S. Ferrara, L. Girardello, O. Piguet, and R. Stora, CERN preprint TH 41134/85Google Scholar
  89. L. Bonora, P. Pasti and M. Tonin, Padova preprint DFPD 20 /84 (1985)Google Scholar
  90. H. Itoyama, V. P. Nair, H. C. Ren, Columbia-Princeton preprint (March 1985)Google Scholar
  91. Guadagnini, Konishi and M. Mintoker, Pisa preprint IFHP-TH-10/85Google Scholar
  92. Zi Wang, Youg-Shi Wu, Univ. of Utah preprint (August 1985)Google Scholar
  93. D. S. Hwang, LBL preprint LBL-20133 (September 1985).Google Scholar
  94. 34.
    See for example F. Gliozzi, J. Scherk and D. Olive, Nucl. Phys. B122, 253 (1977)Google Scholar
  95. E. Cartan, Theory of Spinors ( Dover, N.Y., 1981 )MATHGoogle Scholar
  96. C. Wetterich, Nucl. Phys. 8211, 177 (1982).MathSciNetGoogle Scholar
  97. 35.
    E. Cremer, Lectures at the Trieste School on Supergravity, 1981.Google Scholar
  98. 36.
    H. Georgi, Lie Algebras in Particle Physics (Benjamin, 1982 ).Google Scholar
  99. 37.
    H. Weyl, Classical Groups (Princeton Univ. Press, 1939 ).Google Scholar
  100. 38.
    For useful and practical information on group theory for model building and group embeddings, see D. Slanski, Phys. Rep. 79, 1 (1981).Google Scholar
  101. 39.
    W. Bardeen and B. Zumino, Nucl. Phys. B244, 421 (1984); see also Ref. 20.Google Scholar
  102. 40.
    For general results and definitions of C-functions, see R. Seeley, Proc. Symp. Pure Math. 10, 288 (1967), Am. J. Math. 91, 889 (1969), 91, 963 (1969). For physical applications of the c-function definition of determinants, see J. Dowker and R. Critchley, Phys. Rev. D13, 3224 (1976)Google Scholar
  103. S. W. Hawking, Comm. Math. Phys. 55, 133 (1977).MathSciNetMATHCrossRefGoogle Scholar
  104. 41.
    For a derivation of the index theorem more accessible to physicists, see L. Alvarez-Gaumê, Comm. Math. Phys. 90, 161 (1983), J. Phys. A16, 4177 (1983)Google Scholar
  105. E. Getzler, Comm. Math. Phys. 92, 163 (1983)MathSciNetMATHCrossRefGoogle Scholar
  106. D. Friedan and P. Windey, Nucl. Phys. B235, 395 (1984)MathSciNetCrossRefGoogle Scholar
  107. B. Zumino, LBL preprint 17972, to appear in the Proceedings of the Shelter Island Conference - I I (June 1983).Google Scholar
  108. 42.
    See for instance, A. Lichnerowicz, General Theory of Connections and The HoZonomy Group (Noorhooff, 1976); Goldberg, Curvature and Homology (Dover, N.Y.)Google Scholar
  109. R. Bott and L. Tu, Differential Form in Algebraic Geometry (Springer-Verlag, 1982 ).Google Scholar
  110. 43.
    S. S. Chern, Complex Manifolds without Potential Theory (Van Nostrand, 1967 )Google Scholar
  111. J. Nilnor and J. Stasheff, The Theory of Characteristic Classes (Princeton Univ. Press, 1974 )Google Scholar
  112. T. Eguchi, P. B. Gilkey and A. Hanson, Phys. Rep. 66, 243 (1980)MathSciNetCrossRefGoogle Scholar
  113. F. Hirzebruch, Topological Methods in AZgebraic Geometry (Springer-Verlag, 1966 ).Google Scholar
  114. 44.
    N. Steenrod, The Topology of Fiber Bundles (Princeton Univ. Press, 1951 )Google Scholar
  115. D. Husemoller, Fiber Bundles (Springer-Verlag, 1966 ).Google Scholar
  116. 45.
    For a detailed analysis and references to earlier literature, see P. Van Nieuwenhuizen, Phys. Rep. 68, 189 (1981).Google Scholar
  117. 46.
    M. F. Atiyah and R. Bott in Differential Analysis, Bombay Colloquium (Oxford Univ. Press, 1964 ).Google Scholar
  118. 47.
    L. Alvarez-Gaumê, S. Della Pietra and G. Moore, Ann. of Phys. 163, 288 (1985).MATHCrossRefGoogle Scholar
  119. 48.
    A. Niemi and G. Semenoff, Phys. Rev. Lett. 55, 927 (1985). See also “Index Theorems on Open Infinite Manifolds”, IAS preprint (1985).Google Scholar
  120. 49.
    K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979), 44, 1733 (1980), Phys. Rev. D21, 2848 (1980), D22, 1499(E) (1980), D23, 2262 (1981), D29, 285 (1984)Google Scholar
  121. M. B. Einhorn and D. R. T. Jones, Phys. Rev. D29, 331 (1984)MathSciNetGoogle Scholar
  122. A. P. Balachandran, G. Marno, V. P. Nair, and C. G. Trahern, Phys. Rev. D25, 2713 (1983).Google Scholar
  123. 50.
    O. Alvarez and B. Zumino, LBL preprint in preparation.Google Scholar
  124. 51.
    M. F. Atiyah, K Theory (Benjamin, N.Y., 1967 ).Google Scholar
  125. 52.
    O. Alvarez, I. M. Singer and B. Zumino, LBL preprint in preparation.Google Scholar
  126. 53.
    M. F. Atiyah, The Signature of Fiber Bundles, in Collected Mathematical Papers in Honor of K. kodaira (Tokyo Univ. Press, Tokyo, 1969 ).Google Scholar
  127. 54.
    C. Becchi, A. Rouet and R. Stora, Ann. of Phys. (N.Y.) 98, 287 (1976).MathSciNetCrossRefGoogle Scholar
  128. 55.
    W. A. Bardeen, Phys. Rev. 184, 1848 (1969).CrossRefGoogle Scholar
  129. 56.
    C. K. Chan, G. H. Ying, W. Ke, Phys. Lett. B134, 67 (1984)MathSciNetGoogle Scholar
  130. A. Manohar and G. Moore, Nucl. Phys. B243, 55 (1984)CrossRefGoogle Scholar
  131. C. Callan and E. Witten, Nucl. Phys. B239, 161 (1984)MathSciNetCrossRefGoogle Scholar
  132. K. Chou, H. Guo, X. Li, K. Wu and X. Song, AS-ITP-84–018Google Scholar
  133. H. Kawai, H. Tye, Phys. Lett. B140, 403 (1984)Google Scholar
  134. J. L. Mariez, LBL-17318 (1984).Google Scholar
  135. 57.
    See R. Stora’s Cargese Lectures quoted in Ref. 26.Google Scholar
  136. 58.
    D. Gross, J. Harvey, E. Martinec and R. Rohm, “The Heterotic String I-II”, Princeton preprints to appear in Nucl. Phys. B.Google Scholar
  137. 59.
    P. Candelas, G. Horowicz, A. Strominger and E. Witten, Princeton preprint, and in the Proceedings of the Argonne Meeting on Anomalies, Geometry and Topology, March 1985; W. A. Bardeen and A. White Eds. ( World Scientific, 1985 ).Google Scholar
  138. 60.
    S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177, 2239 (1969).CrossRefGoogle Scholar
  139. 61.
    C. Callan, S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177, 2247 (1969).CrossRefGoogle Scholar
  140. 62.
    W. A. Bardeen and V. Visnjic, Nucl. Phys. B149, 422 (1982)CrossRefGoogle Scholar
  141. W. Büchmuller, S. Love, R. Peccei, T. Yanagida, Phys. Lett. 124B, 67 (1983)Google Scholar
  142. W. Büchmuller, R. Peccei, T. Yanagida, Nucl. Phys. B227, 503 (1983), B231, 53 (1984).CrossRefGoogle Scholar
  143. 63.
    M. Berger, Comptes Rendus Acad. Sci.,Paris, 262A, 1316 (1966).MATHGoogle Scholar
  144. 64.
    A. Lichnerowicz, Geometry of Groups of Transformations ( Noordhoff Ed. Holland, 1976 ).Google Scholar
  145. 65.
    E. Cohen and C. Gomez, Nucl. Phys. B254, 235 (1985)MathSciNetCrossRefGoogle Scholar
  146. P. Di Vecchia, S. Ferrara and L. Girardello, Phys. Lett. 151B, 151 (1985).Google Scholar
  147. 66.
    N. Marcus, Phys. Lett. 157B, 383 (1985).Google Scholar
  148. 67.
    C. Hull and E. Witten, Princeton preprint (June 1985).Google Scholar
  149. 68.
    Proceedings of the Argonne Workshop on Anomalies, Topology and Geometry Eds. W. A. Bardeen and A. White (World Scientific, 1985).Google Scholar
  150. 69.
    See for example R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37, 172 (1976)Google Scholar
  151. C. Callan, R. Dashen and D. Gross, Phys. Rev. D17, 2717 (1978).Google Scholar
  152. 70.
    M. Berry, Proc. Royal Soc.,London A392, 45 (1984)MATHCrossRefGoogle Scholar
  153. B. Simon, Phys. Rev. Lett. 51, 2167 (1983).MathSciNetCrossRefGoogle Scholar
  154. 71.
    H. Sonoda, Caltech preprints 68–1271, 68–1242.Google Scholar
  155. 72.
    B. Zumino, Phys. Lett. 87B, 203 (1979).Google Scholar
  156. 73.
    L. Alvarez-Gaumê and S. Della Pietra in Recent Developments in Quantum Field Theory (Niels Bohr Centennial Conference), Eds. J. Ambjlrn, B. J. Durhuus and J. L. Petersen (Elsevier Science Pub. B.V., 1985 )Google Scholar
  157. b) L. Alvarez-Gaumé, S. Della Pietra and V. Della Pietra, Harvard preprint HUTP-85/A034, to appear in Phys. Lett. B.Google Scholar
  158. 74.
    L. Alvarez-Gaumé, S. Della Pietra and V. Della Pietra, Harvard preprint HUTP-85/A083, to appear in Comm. Math. Phys.Google Scholar
  159. 75.
    R. C. Ball and H. Osborn, DAMTP85–10.Google Scholar
  160. 76.
    D. Freed and J. Bismut, D. R. Acad. Sc. Paris t.301, serie I, No. 14, 54 (1985), and paper in preparation.Google Scholar
  161. 77.
    For a comprehensive review, see M. Peskin in Recent Developments in Field Theory and Statistical Mechanics, Eds. J. B. Zuber and R. Stora (North Holland, 1982 ).Google Scholar
  162. 78.
    N. K. Nielsen and N. Ninomiya, Nucl. Phys. 8185, 20 (1981). See also J. Kogut’s contribution in the volume in Ref. 77.Google Scholar
  163. 79.
    See for instance, S. Coleman in Aspects of Symmetry (Cambridge Univ. Press, 1985 ).Google Scholar
  164. 80.
    D. Weingarten, Phys. Rev. Lett. 51, 1830 (1983)CrossRefGoogle Scholar
  165. N. Nussinov, Phys. Rev. Lett. 51, 2081 (1983)CrossRefGoogle Scholar
  166. E. Witten, Phys. Rev. Lett. 51, 2351 (1983)MathSciNetCrossRefGoogle Scholar
  167. C. Vafa and E. Witten, Nucl. Phys. 8234, 173 (1984).MathSciNetCrossRefGoogle Scholar
  168. 81.
    See H. Georgi, Lectures presented at the 1985 Les Houches Summer School.Google Scholar
  169. 82.
    S. Coleman and E. Witten, Phys. Rev. Lett. 45, 100 (1980).MathSciNetCrossRefGoogle Scholar
  170. 83.
    R. Seeley in Proc. Sym. Pure Mathematics, Vol. X ( American Math. Soc., 1967 ).Google Scholar
  171. 84.
    A. N. Redlich, Phys. Rev. Lett. 52, 1 (1984); see also Ref. 11.Google Scholar
  172. 85.
    J. Milnor, Ann. of Math. 64, 399 (1956)MathSciNetMATHCrossRefGoogle Scholar
  173. M. Korvaire and J. Milnor, Ann. of Math. 77, 504 (1963).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Luis Alvarez-Gaumé
    • 1
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations