Fundamental Problems of Gauge Field Theory: Introduction to the Problems

  • Arthur S. Wightman
Part of the NATO ASI Series book series (NSSB, volume 141)

Abstract

We have now had nearly a decade and a half of successful applications of gauge field theory to electroweak and strong interactions. The pioneering experiments, and the more systematic experiments that have followed, have given rough agreement for QCD and rather precise agreement for the standard model of the electroweak interactions. There is a general consensus that the new theories represent important progress. However, the calculations to be compared with experiment are at the moment still rather tentative in places, and there are many questions of principle the answers to which have not yet been given in an unambiguous way.

Keywords

Neral Explosive Dition Ghost Nite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T.D. Lee and C.N. Yang: Conservation of Heavy Particles and Generalized Gauge Transformations. Phys. Rev. 98 (1955) 1501CrossRefGoogle Scholar
  2. [2]
    J. Sakurai: Theory of Strong Interactions. Ann. Phys. (N.Y.) 11 (1961) 1–48MathSciNetGoogle Scholar
  3. [3]
    J. Schwinger: Gauge Invariance and Mass. Phys. Rev. 125 (1962) 397–398;MathSciNetMATHCrossRefGoogle Scholar
  4. J. Schwinger: Gauge Theories of Vector Particles. pp. 89–134 in Theoretical Physics, 1962 Int. Atomic Energy AgencyGoogle Scholar
  5. [4]
    P.W. Anderson: Plasmons, Gauge Invariance and Mass. Phys. Rev. 130 (1963) 439–442MathSciNetMATHCrossRefGoogle Scholar
  6. [5]
    P. Higgs: Broken Symmetries, Massless Particles, and Gauge Fields. Phys. Lett. 12 (1964) 132–133;Google Scholar
  7. P. Higgs: Spontaneous Symmetry Breaking Without Massless Particles. Phys. Rev. 145 (1966) 1156–1163MathSciNetCrossRefGoogle Scholar
  8. [6]
    G. Guralnik, C. Hagen, T. Kibble: Global Conservation Laws and Massless Particles. Phys. Rev. Lett. 13 (1964) 585–587CrossRefGoogle Scholar
  9. [7]
    R. Brout and F. Englert: Broken Symmetry and the Mass of Gauge Vector Bosons. Phys. Rev. Lett. 13 (1964) 321–323MathSciNetCrossRefGoogle Scholar
  10. [8]
    S. Weinberg: Recent Progress in Gauge Theories of the Weak, Electromagnetic and Strong Interactions. Rev. Mod. Phys. 46 (1974) 255–277MathSciNetCrossRefGoogle Scholar
  11. [9]
    B.W. Lee: Renormalization of the a-Model. Nucl. Phys. B9 (1969) 649–672;CrossRefGoogle Scholar
  12. G. ’t Hooft: Renormalizable Lagrangians for Massive Yang-Mills Fields. Nucl. Phys. B35 (1971) 167–188CrossRefGoogle Scholar
  13. [10]
    N.D. Mermin and H. Wagner: Absence of Ferromagnetism or Antiferromagnetism in One or Two Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 17 (1966) 1133–1136CrossRefGoogle Scholar
  14. [11]
    S. Elitzur: Impossibility of Spontaneously Breaking Local Symmetries. Phys. Rev. D12 (1975) 3978–3982Google Scholar
  15. [12]
    G. De Angelis, D. de Falco, and F. Guerra: Note on the Abelian Higgs Model on a Lattice: Absence of Spontaneous Magnetization. Phys. Rev. D17 (1978) 1624–1628Google Scholar
  16. [13]
    T. Banks and E. Rabinovici: Finite Temperature Behavior of the Lattice Abelian Higgs Model. Nucl. Phys. B160 (1979) 349–379CrossRefGoogle Scholar
  17. [14]
    J.Fröhlich, G. Morchio and F. Strocchi: Higgs Phenomenon Without Symmetry Breaking Order Parameter. Nucl. Phys. B190 (1981) 553–582CrossRefGoogle Scholar
  18. [15]
    G. ’t Hooft: Naturalness, Chiral Symmetry Breaking and Spontaneous Chiral Symmetry Breaking. pp. 135–157 in Recent Developments in Gauge Theories. Cargèse Lectures 1974, ed. G. ’t Hooft et al.Google Scholar
  19. [16]
    C. King: The υ (1) Higgs Model. I. The Continuum Limit. II. The Infinite Volume Limit. To appear in Comm. Math. Phys.Google Scholar
  20. [17]
    D. Brydges, J. Fröhlich, E. Seiler: Construction of Quantized Gauge Fields. I. General Results. Ann. of Phys. 121 (1979) 227–284CrossRefGoogle Scholar
  21. D. Brydges, J. Fröhlich, E. Seiler: Construction of Quantized Gauge Fields. II. Convergence of the Lattice Approximation. Comm. Math. Phys. 71 (1980) 159–205MathSciNetCrossRefGoogle Scholar
  22. D. Brydges, J. Fröhlich, E. Seiler: Construction of Quantized Gauge Fields. III. The Two Dimensional Abelian Higgs Model Without Cutoffs. Comm. Math. Phys. 79 (1981) 353–399MathSciNetCrossRefGoogle Scholar
  23. [18]
    E. Seiler: Gauge Theories as a Problem of Constructive Field Theoery and Statistical Mechanics. In Lecture Notes in Physics 159, Springer Verlag 1982; see also: The Confinement Problem, MPI-PAE/PTh 47/85, July 1985Google Scholar
  24. [19]
    T. Balaban, D. Brydges, J. Imbrie and A. Jaffe: The Mass Gap for Higgs Models on a Unit Lattice. Ann. of Phys. (N.Y.) 158 (1984) 281–319CrossRefGoogle Scholar
  25. [20]
    D. Brydges, J. Fröhlich and E. Seiler: Diamagnetic and Critical Properties of Higgs Lattice Gauge Theories. Nucl. Phys. B152 (1979) 521–532CrossRefGoogle Scholar
  26. [21]
    D. Brydges and E. Seiler: Absence of Screening in Certain Lattice Gauge and Plasma Models. To appearGoogle Scholar
  27. [22]
    T. Kennedy and C. King: Symmetry Breaking in the Lattice Abelian Higgs Model. Phys. Rev. Lett. 55 (1985) 776–778CrossRefGoogle Scholar
  28. [23]
    D. Buchholz and K. Fredenhagen: Locality and the Structure of Particle States. Comm. Math. Phys. 84 (1982) 1–54MathSciNetMATHCrossRefGoogle Scholar
  29. [24]
    J. Fröhlich, K. Osterwalder and E. Seiler: On Virtual Representations of Symmetric Spaces and their Analytic Continuation. Ann. of Math. 118 (1983) 461–489MathSciNetMATHCrossRefGoogle Scholar
  30. [25]
    M. Göpfert and G. Mack: Proof of Confinement of Static Quarks in 3Dimensional Lattice Gauge Theory for All Values of the Coupling Constant. Comm. Math. Phys. 82 (1982) 545–606CrossRefGoogle Scholar
  31. [26]
    L. Gross: Convergence of 1…/(1)3 Lattice Gauge Theory to its Continuum Limit. Comm. Math. Phys. 92 (1983) 137–162MathSciNetMATHCrossRefGoogle Scholar
  32. [27]
    K. Gawedski, A. Kupiainen: Exact Renormalization for the Gross-Neveu Model of Quantum Fields. Phys. Rev. Lett. 54 (1985) 2191–2194CrossRefGoogle Scholar
  33. [28]
    J. Feldman, J. Magnen, V. Rivasseau and R. Séneor: A Renormalizable Field Theory: The Massive Gross-Neveu Model in Two Dimensions. Ecole Polytechnique preprint 1985Google Scholar
  34. [29]
    K. Osterwalder and E. Seiler: Gauge Field Theories on a Lattice. Ann. of Phys. (N.Y.) 110 (1978) 440–471MathSciNetCrossRefGoogle Scholar
  35. [30]
    K. Fredenhagen and M. Marcu: A Confinement Criterion for QCD with Dynamical Quarks. DESY preprint 85–008, January 1985Google Scholar
  36. [31]
    K. Fredenhagen and M. Marcu: Charged States in ℤ2 Gauge Theories. Comm. Math. Phys. 92 (1983) 81–119MathSciNetMATHCrossRefGoogle Scholar
  37. [32]
    G. Mack and H. Meyer: A Disorder Parameter that Tests for Confinement in Gauge Theories with Quark Fields. Nucl. Phys. 200B (1982) 249MathSciNetCrossRefGoogle Scholar
  38. [33]
    J. Bricmont and J. Fröhlich: An Order Parameter Distinguishing Between Different Phases of Lattice Gauge Theories with Matter Fields. Phys. Lett. 122B (1983) 73–77Google Scholar
  39. [34]
    F. Strocchi: Spontaneous Symmetry Breaking in Local Gauge Quantum Field Theory; The Higgs Mechanism. Comm. Math. Phys. 56 (1977) 5778;MathSciNetCrossRefGoogle Scholar
  40. F. Strocchi: Local and Covariant Gauge Quantum Field Theories. Cluster Property, Super-selection Rules and the Infra-Red Problem. Phys. Rev. D17 (1978) 2010–2021MathSciNetGoogle Scholar
  41. [35]
    G. Morchio and F. Strocchi: Infra-Red Singularities, Vacuum Structure and Pure Phases in Local Quantum Field Theory. Annales de l’Institut Henri Poincaré XXXIII (1980) 251–282MathSciNetGoogle Scholar
  42. [36]
    G. Curci and R. Ferrari: An Alternative Approach to the Proof of Unitarity for Gauge Theories. Nuovo Cim. 35A (1976) 273–279CrossRefGoogle Scholar
  43. [37]
    T. Kugo and I. Ojima: Local Covariant Operator Formalism of Non-Abelian Gauge Theories and Quark Confinement. Suppl. Prog. Theor. Phys. 66 (1979) 1–130CrossRefGoogle Scholar
  44. [38]
    S. Doplicher: Local Aspects of Superselection Rules. Comm. Math. Phys. 85 (1982) 73–86;MathSciNetMATHCrossRefGoogle Scholar
  45. [39]
    J. Roberts: Localization in Algebraic Field Theory. Comm. Math. Phys. 85 (1982) 87–98MathSciNetMATHCrossRefGoogle Scholar
  46. [40]
    D. Buchholz: The Physical State Space of Quantum Electrodynamics. Comm. Math. Phys. 85 (1982) 49–71MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Arthur S. Wightman
    • 1
  1. 1.Physics DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations