Respiratory Sinus Arrhythmia and Parasympathetic Cardiac Control: Some Basic Issues Concerning Quantification, Applications and Implications

  • P. Grossman
  • K. Wientjes
Part of the NATO ASI Series book series (NSSA, volume 114)


In recent years, increasing attention has been directed to the phenomenon of respiratory sinus arrhythmia (RSA) by physiologists and psychophysiologists (e.g. Fouad et al., 1984; Haddad et al., 1984; Porges, McCabe and Yongue, 1982; Zemaityte, Varoneckas and Sokolov, 1984). This has largely been a consequence of the finding that RSA magnitude is a sensitive index of cardiac parasympathetic control under various conditions (first shown by Katona and Jih, 1975). An easily obtainable noninvasive measure of specific neural influences upon the heart is likely to generate much enthusiasm, debate and discussion revolving around issues of the actual validity of the index, the most appropriate RSA parameter to use for the measure, the physiological mechanisms precisely underlying the phenomenon, and potential research and clinical application areas. The purpose of the present paper is to delve into these various aspects of RSA as cardiac vagal index, not in terms of a comprehensive review of these issues, but rather in an effort to point out certain misunderstood and overlooked areas.


Tidal Volume Respiratory Sinus Arrnythmia Vagal Tone Heart Period Vagal Control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angelone, A., and Coulter, N.A., 1964, Respiratory sinus arrhythmia: a frequency-dependent phenomenon, J. Appl. Physiol., 19:479–482.PubMedGoogle Scholar
  2. Ax, A. F., Bamford, J. L., and Fetzner, J. M., 1973, Respiration sinus arrhythmia in psychotic children, Psychophysiology, 10:401–414.PubMedCrossRefGoogle Scholar
  3. Boer, R. W. de, Karemaker, J., and Strackee, J., 1985, Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects II: a simple model, Med. & Biol. Engineering & Computers, 23:352–358.CrossRefGoogle Scholar
  4. Bohrer, R. E., and Porges, S. W., 1982, The application of time-series statistics to psychological research: an introduction, in: “Psychological Statistics”, G. Karen, ed., Hillsdale, N. J.:Erlbaum.Google Scholar
  5. Bristow, J. D., Honour, A. J., Pickering, G. W., Sleight, P., and Smyth, W. S., 1969, Diminished baroreflex sensitivity in high blood pressure, Circulation, 39:48–54.PubMedGoogle Scholar
  6. Clynes, M., 1960, Respiratory sinus arrhythmia: laws derived from computer simulation, J. Appl. Physiol., 15:863–874.PubMedGoogle Scholar
  7. Coker, R., Koziell, A., Olivier, C., and Smith, S. E., 1984, Does the sympathetic nervous system influence sinus arrhythmia in man? Evidence from combined autonomic blockade, J. Physiol, 356:459–564.PubMedGoogle Scholar
  8. Davies, C. T. M., and Neilson, J. M. M.,1967, Sinus arrhythmia in man at rest, J. Appl. Physiol., 22:947–955.PubMedGoogle Scholar
  9. Eckberg, D. L., Kifle, Y. T., and Roberts, V. L., 1980, Phase relationship between human respiration and baroreflex responsiveness, J. Physiol. (London), 304:489–502Google Scholar
  10. Eckberg, D. L., 1983, Human sinus arrhythmia as an index of vagal cardiac outflow, J. Appl. Physiol., 54:961–966.PubMedGoogle Scholar
  11. Ewing, D. J., Borsey, D. Q., Bellavere, F., and Clarke, B. F., 1981, Cardiac autonomic neuropathy in diabetes: comparison of measures of R-R interval variation, Diabetologica, 32:18–24.CrossRefGoogle Scholar
  12. Fouad, F. M., Tarazi, R. C., Ferrario, C. M., Fighaly, S., and Alicandro, C., 1984, Assessment of parasympathetic control of heart rate by a noninvasive method, Am. J. Physiol., 246:H838-H842.PubMedGoogle Scholar
  13. Fox, N. A., and Porges, S. W., 1985, The relation between neonatal heart patterns and developmental outcome, Child Development, 56:28–37.PubMedCrossRefGoogle Scholar
  14. Gilbey, M. P., Jordan, D., Richter, D. W., and Spijer, K. M., 1984, Synaptic mechanisms involved in the inspiratory modulation of vagal cardio-inhibitory neurones in the cat, J. Physiol., 356:65–78.PubMedGoogle Scholar
  15. Grossman, P., 1983, Respiration, stress and cardiovascular function, Psycho-physiology, 20:284–300.Google Scholar
  16. Grossman, P., Wientjes, K., and Defares, P. B., 1984, Individual differences in cardiac parasympathetic control predicted by ventilatory parameters, Psychophysiology, 21:579(A).Google Scholar
  17. Grossman, P. and Wientjes, K., 1985, Respiratory-cardiac coordination as an index of cardiac functioning, jin: “Cardiovascular Psychophysiology: Theory and Methods”, J.F. Orlebeke, G. Mulder and L.J.P. van Doornen, eds., Plenum, New York, pp. 451–465.Google Scholar
  18. Grossman, P., Wientjes, K. and Defares, P., 1985, Respiratory influences upon individual differences in cardiac parasympathetic control, in: “Stress and the Work Situation”, K. Wientjes and P. Grossman, eds., TNO Institute for Perception, Soesterberg, the NetherlandsGoogle Scholar
  19. Haddad, G. G., Jeng, H. J., Lee, S. H., and Lai, T. L., 1984, Rhythmic variations in R-R interval during sleep and wakefulness in puppies and dogs, Am. J. Physiol.,247:H67–H73.PubMedGoogle Scholar
  20. Harper, R. M., Walter, D. O., Leake, B., Hoffman, H. J., Sieck, G. C., Sterman, M. B., Hoppenbrouwers, T., and Hodgman, J., 1978, Development of sinus arrhythmia during sleeping and waking states in normal infants, Sleep, 1:33–48.PubMedGoogle Scholar
  21. Hilsted, J., and Jensen, S. B., 1979, A simple test for autonomic neuropathy in juvenile diabetes, Acta Medica Scand., 205:385–387.CrossRefGoogle Scholar
  22. Hinkle, L. E., Carver, S. T., and Plakun, A., 1972, Slow heart rates and increased risk of cardiac death, Arch. Int. Med., 129:732–750.CrossRefGoogle Scholar
  23. Hirsch, J. A., and Bishop, B., 1981, Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate, Am. J. Physiol., 241:H620–H629.PubMedGoogle Scholar
  24. Janssen, K. H., 1983, Treatment of sinus tachycardia with heart rate feedback: A group outcome study, J. Beh. Med., 6:109–114.CrossRefGoogle Scholar
  25. Johnston, L. C., 1980, The abnormal heart rate response to a deep breath in borderline labile hypertension: a sign of autonomic nervous system dysfunction, Am. Heart J., 99:487–493.PubMedCrossRefGoogle Scholar
  26. Kallenbach, J. M., Webster, T., Dowdeswell, R., Reinach, S. G., Millar, R. N., Scott, and Zwi, S., 1985, Reflex heart rate control in asthma. Evidence of parasympathetic overactivity, Chest, 87:644–648.PubMedCrossRefGoogle Scholar
  27. Katona, P. G., and Jih, R., 1975, Respiratory sinus arrhythmia: a noninvasive measure of parasympathetic cardiac control, J. Appl. Physiol., 39:801–805.PubMedGoogle Scholar
  28. Lipson, D., and Katona, P. G., 1979, Respiratory sinus arrhythmia: a noninvasive assessment of parasympathetic chronotropic cardiac control in the conscious dog, Federation Proceeding, 38:990 (Abstract).Google Scholar
  29. McCabe, P. M., Yongue, B. G., Ackles, P. K., and Porges, S. W., 1985, Changes in heart period, heart-period variability, and a spectral estimate of respiratory sinus arrhythmia in response to pharmacological manipulations of the baroreflex in cats, Psychophysiology, 22:195–203.PubMedCrossRefGoogle Scholar
  30. Mulder, G., and Mulder, L. J. M., 1981, Information processing and cardiovascular control, Psychophysiology, 14:392–402.CrossRefGoogle Scholar
  31. Mulder, L. J. M., 1985, Cardiovascular measures and models in time and frequency domain, in: “The Psychophysiology of Cardiovascular Control”, J. F. Orlebeke, G. Mulder and L. J. P. van Doornen, eds., Plenum, New York.Google Scholar
  32. Orr, W. C., and Naitoh, P., 1976, The coherence spectrum: an extension of correlation analysis with applications to chronobiology, Intern. J. Chronobiol., 3:171–192.Google Scholar
  33. Porges, S. W., Bohrer, R. E., Keren, G., Cheung, M. N., Franks, G. J., and Drasgow, F., 1981, The influence of methylphenidate on spontaneous autonomic activity and behavior in children diagnosed as hyperactive, Psychophysiology, 18:42–48.PubMedCrossRefGoogle Scholar
  34. Porges, S. W., McCabe, P. M., and Yongue, B. G., Respiratory-heart rate interactions: psychophysiological implications for pathophysiology and behavior, in: “Perspectives in Cardiovascular Psychophysiology”, J. J. Cacioppo, ed., R. E. Petty, Guildford:New York.Google Scholar
  35. Raczkowska, M., Eckberg, D. L., and Ebert, T. J., 1983, Muscarinic cholinergic receptors modulate vagal cardiac responses in man, J. Auto. Nervous System, 7:271–278.CrossRefGoogle Scholar
  36. Richards, J. E., 1984, The “interrupted stimulus” method for measuring sustained attention in infants from 14 to 26 weeks of age, Psychophysiology, 21:594–595 (A).Google Scholar
  37. Richards, J. E., 1985, Respiratory sinus arrhythmia predicts heart rate and visual responses during visual attention in 14 and 20 week old infants, Psychophysiology, 22:101–109.PubMedCrossRefGoogle Scholar
  38. Schaefer, K. E., 1958, Respiratory patterns and respiratory response to carbon dioxide, J.Appl.Physiol., 13:1–14.PubMedGoogle Scholar
  39. Schlomka, G., 1937, Untersuchungen über die physiologische Unregelmässigkeit des Herzschlages. Ill Mitteilung: über die abhängigkeit der respiratorischen Arrhythmie von Schlagfrequenz und vom Lebensalter, Kreislaufforschritte, 29:510–529.Google Scholar
  40. Selman, A., McDonald, A., Kitney, R., and Linkens, D., 1982, The interaction between heart rate and respiration: Part I — experimental studies in man, Automedica, 4:131–139.Google Scholar
  41. Smith, S. A., 1982, Reduced sinus arrhythmia in diabetic autonomic neuropathy: diagnostic value of an age-related normal range, Br. Med. J., 285:1599–1601.CrossRefGoogle Scholar
  42. Sundkvist, G., Aimer, L. O., and Lilja, B., 1979, Respiratory influence on heart rate in diabetes mellitus, Br. Med. J., 1:924–925.PubMedCrossRefGoogle Scholar
  43. Wheeler, T., and Watkins, P. J., 1973, Cardiac denervation in diabetes, Br. Med. J., 4:584–586.PubMedCrossRefGoogle Scholar
  44. White, D. P., Douglas, N. J., Pickett, C. K., Weil, J. V., and Zwillich, C. W., 1983, Sexual influence on the control of breathing, J. Appl. Physiol., 54:874–879.PubMedGoogle Scholar
  45. Wieling, W., Brederode, J. F. M. van, Rijk, L. G. der and Dunning, A. J., 1982, Reflex control of heart rate in normal subjects in relation to age: a data base for cardiac vagal neuropathy, Diabetologica, 22:163–166.CrossRefGoogle Scholar
  46. Yuen, C. K., and Fraser, D., 1979, “Digital Spectral Analysis,” San Francisco: Pitman.Google Scholar
  47. Zemaityte, D., Varoneckas, G., and Sokolov, E., 1984a, Heart rhythm control during sleep, Psychophysiology, 21:279–289.CrossRefGoogle Scholar
  48. Zemaityte, D., Varoneckas, G., and Sokolov, E., 1984b, Heart rhythm during sleep in ischemic heart disease, Psychophysiology, 21:290–298.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • P. Grossman
    • 1
  • K. Wientjes
    • 2
  1. 1.Institute for Stress Research, Department of Physiological PsychologyFree University of AmsterdamThe Netherlands
  2. 2.TNO-Institute for Perception, Department of Physiological PsychologyFree University of AmsterdamThe Netherlands

Personalised recommendations