Respiratory Sinus Arrhythmia: Physiological Basis, Quantitative Methods, and Clinical Implications

  • Stephen W. Porges
Part of the NATO ASI Series book series (NSSA, volume 114)


Of the many observable physiological oscillations, the oscillations in the heart rate pattern associated with respiration (i.e. respiratory sinus arrhythmia) are the most relevant to psychophysiological research. The use of respiratory sinus arrhythmia in psychophysiological research may be justified by the facts that: (1) neurophysiology justifies the measurement of the amplitude of respiratory sinus arrhythmia as an index of cardiac vagal tone; (2) the amplitude of respiratory sinus arrhythmia indexes general central nervous system status; and (3) the changing amplitude of respiratory sinus arrhythmia parallels psychological constructs often used in psychophysiological paradigms such as sustained attention and stress.


Respiratory Sinus Arrhythmia Vagal Tone Heart Period Atropine Sulfate Heart Rate Pattern 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akelrod, S. D., Gordon, D., Ubel, F. A., Shannon, D. C., Barger, D. C., and Cohen, R. J., 1981, Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to-beat cardiovascular control, Science, 213:220–222.CrossRefGoogle Scholar
  2. Angell-James, J. E., and Daly, M. D. B., 1978, The effects of artificial lung inflation on reflexly induced bradycardia associated with apnea in the dog, J. Physiol., 274:349–366.PubMedGoogle Scholar
  3. Anrep, G. V., Pascual, W., and Rossler, R., 1936a, Respiratory variations of the heart rate: I — The reflex mechanism of respiratory arrhythmia, Proc. Roy. Soc., 119:191–217.CrossRefGoogle Scholar
  4. Anrep, G. V., Pascual, W., and Rossler, R., 1936b, Respiratory variations of the heart rate: II — The central mechanism of the respiratory arrhythmia and the interrations between the central and reflex mechanisms, Proc. Roy. Soc, 119:218–230.CrossRefGoogle Scholar
  5. Bartlett, 1966, An Introduction to Stochastic Process, 2nd ed., Cambridge University Press, Cambridge.Google Scholar
  6. Bohrer, R., and Porges, S. W., 1982, The application of time-series statistics to psychological research: an introduction, in: “Statistical and Methodological Issues in Psychology and Social Sciences Research”, G. Keren, ed., LEA, 309–345, Hillsdale, N.J.Google Scholar
  7. Brener, J., Philips, K., and Connally, S. R., 1980, Oxygen consumption, I heart rate and ambulation during shock avoidance conditioning of heart rate increases and ambulation in freely moving rats, Psycho- I physiology, 17:64–74. IGoogle Scholar
  8. Chatfield, C., 1975, The analysis of time series: theory and practice, Chapman & Hall, London.Google Scholar
  9. Chess, G. F., Tarn, M. K., and Calaresu, R. F., 1975, Influences of cardiac neural inputs on rhythmic variation of heart period in the cat, Am.J. Physiol., 228:775.PubMedGoogle Scholar
  10. Cheung, M. N., and Porges, S. W., 1977, Respiratory influences on cardiac responses during attention, Physiol. Psychol., 5:53–57.Google Scholar
  11. Davidson, N. S., Goldner, S., and McCloskey, D. I., 1976, Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate and cardiac vagal efferent nerve activity, J. Physiol., 259:523–530.PubMedGoogle Scholar
  12. Davis, A. L., McCloskey, D. I., and Potter, E. K., 1977, Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate through the sympathetic nervous system, J. Physiol., 272:691–703.PubMedGoogle Scholar
  13. Dellinger and Porges, 1984, The effect of atropine sulfate on the amplitude of respiratory sinus arrhythmia (V) in humans, Abstract, Psycho-physiology, 21:575.Google Scholar
  14. Donchin, Y., Feld, J. M., and Porges, S. W., 1985, Respiratory sinus arrhythmia during recovery from isoflurane-nitrous oxide anaethesia, Anesthesia and Analgesia, 64:811–815.PubMedCrossRefGoogle Scholar
  15. Eppinger, H., and Hess, L., 1915, Vagotonia: a clinical study in vegetative neurology, J. Nervous & Mental Disease, Monograph Series, whole issue #20.Google Scholar
  16. Fouad, F. M., Tarazi, R. C., Ferrario, C. M., Fighaly, S., and Alicandri, C., 1984, Assessment of parasympathetic control of heart rate by a noninvasive method, Am. J. Physiol., 246:H838–H842.PubMedGoogle Scholar
  17. Fox, N. A., and Porges, S. W., 1985, The relation between neontal heart period patterns and developmental outcome, Child Development, 56:28–37.PubMedCrossRefGoogle Scholar
  18. Gilbey, M. P., Jordan, D., Richter, D. W., and Spyer, K. M., 1983, The inspiratory control of vagal cardio-inhibitory neurons in the cat, J. Physiol., 343:57–58.Google Scholar
  19. Gottman, J. M., 1981, Time-Series Analysis, Cambridge University Press, New York.Google Scholar
  20. Grossman, P., Wientjes, C., and Defares, P., 1984, Individual differences in cardiac parasympathetic control predicted by ventilatory parameters, Abstract, Psychophysiology, 21:579.Google Scholar
  21. Haymet, B. T., and McCloskey, D. I., 1975, Baroreceptor and chemoreceptor influences on heart rate during the respiratory cycle in the dog, J.Physiol., 245:699–712.PubMedGoogle Scholar
  22. Hering, H. E., 1910, A functional test of heart vagi in man, Munch. Medig.Woch., 57(2):1930–32.Google Scholar
  23. Hirsch, J. A., and Bishop, B., 1981, Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate, Am. J. Physiol., 241:H620–H629.PubMedGoogle Scholar
  24. Iriuchjima, J., and Kumada, M., 1964, Activity of single vagal fibers efferent to the heart, Japanese J. Physiol., 14:479–487.CrossRefGoogle Scholar
  25. Jewett, D. L., 1964, Activity of single efferent fibers in the cervical vagus nerve of the dog, with special reference to possible cardio-inhibitory fibers, J.Physiol., 175:321–357.PubMedGoogle Scholar
  26. Jordan, D., Khalid, M. E. M., Schneidnerman, N., and Spyer, K. M., 1982, The location and properties of preganglionic vagal cardiomotor neurones in the rabbit, Pflügers Arch., 395:244–250.PubMedCrossRefGoogle Scholar
  27. Katona, P. J., and Jih, F., 1975, Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control, J. Appl. Physiol., 39:801–805.PubMedGoogle Scholar
  28. Katona, P. G., Poitras, J. W., Barnett, G. O., and Terry, B. S., 1970, Cardiac vagal efferent activity and heart period in the carotid sinus reflex, Am.J. Physiol., 218:1030–1037.PubMedGoogle Scholar
  29. Kitney, R. I., Byrne, S., Edmonds, M. E., Watkins, P. J., and Roberts, V. C., 1982, Heart rate variability in the assessment of autonomic diabetic neuropathy, Automedica, 4:155–167.Google Scholar
  30. Kitney, R. I., and Rompelman, P., 1980, The Study of Heart Rate Variability, Oxford University Press, Oxford.Google Scholar
  31. Kunze, D. L., 1972, Reflex discharge patterns of cardiac vagal afferent fibers, J. Physiol., 222:1–15.PubMedGoogle Scholar
  32. Lopes, O. V., and Palmer, J. F., 1976, Proposed respiratory gating mechanism for cardiac slowing, Nature, 264:454–456.PubMedCrossRefGoogle Scholar
  33. McCabe, P. M., Yongue, B. G., Porges, S. W., and Ackles, P. K., 1984, Changes in heart period, heart period variability, and a spectral analysis estimate of respiratory sinus arrhythmia during aortic nerve stimulation in rabbits, Psychophysiology, 21:149–158.PubMedCrossRefGoogle Scholar
  34. McCabe, P. M., Yongue, B. G., Ackles, P. K., and Porges, S. W., 1985, Changes in heart period, heart-period variability and a spectral analysis estimate of respiratory sinus arrhythmia in response to pharmacological manipulations of the baroreceptor reflex in cats, Psychophysiology, 22:195–203.PubMedCrossRefGoogle Scholar
  35. Porges, S. W., 1976, Peripheral and neurochemical parallels of psycho-pathology: a psychophsyiological model relating autonomic imbalance to hyperactivity, psychopathy, and autism, in: “Advances in Child Development and Behavior”, H. W. Reese, ed., pp. 35–65, Academic Press, New York.Google Scholar
  36. Porges, S. W., Bohrer, R. E., Cheung, M. N., Drasgow, F., McCabe, P., and Keren, G., 1980, A new time-series statistic for detecting rhythmic co-occurrence in the frequency domain: the weighted coherence and its application to psychophysiological research, Psychol. Bull., 88:580–587.PubMedCrossRefGoogle Scholar
  37. Porges, S. W., 1982, Method and apparatus for evaluating rhythmic oscillations in aperiodic phsyiological response systems, Patent pending.Google Scholar
  38. Porges, S. W., McCabe, P. M., and Yongue, B. G., 1982, Respiratory-heart-rate interactions: psychophysiological implications for pathophysiology and behavior, in: “Perspectives in Cardiovascular Psycho-physiology”, J. Cacioppo and R. Petty, eds., Guilford Press, New York.Google Scholar
  39. Porges, S. W., 1983, Heart rate patterns in neonates: a potential diagnostic window to the brain, in: “Infants Born at Risk: Physiological, Perceptual, and Cognitive Processes”, T. Field and A. Sostek, eds., pp. 3–22, Grune & Stratton, New York.Google Scholar
  40. Sachis, P. N., Armstrong, D. L., Becker, L. E., and Bryan, A. C., 1982, Myelination of the human vagus nerve from 24 weeks postconceptional age to adolescence, J. Neuropath. & Exp. Neurol., 41:466–472.CrossRefGoogle Scholar
  41. Sayers, B. M., 1973, Analysis of heart rate variability, Ergonomics, 16:17–32.PubMedCrossRefGoogle Scholar
  42. Woodson, R., Field, T., and Greenberg, R., 1983, Estimating neonatal oxygen consumption from heart rate, Psychophysiology, 20:558–561.PubMedCrossRefGoogle Scholar
  43. Wundt, W., 1904, Principles of physiological psychology, The MacMillan Co., New York.Google Scholar
  44. Yongue, B. G., McCabe, P. M., Porges, S. W., Rivera, M., Kelley, S. L., and Ackles, P. K., 1982, The effects of pharmacological manipulations that influence vagal control of the heart on heart period, heart-period variability and respiration in rats, Psychophysiology, 19:426–432.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Stephen W. Porges
    • 1
  1. 1.Department of PsychologyUniversity of Illinois at Urbana-ChampaignUSA

Personalised recommendations