Relations between Changes in Cardiac Parasympathetic Activity and Heart Rate Variability

  • John M. Karemaker
Part of the NATO ASI Series book series (NSSA, volume 114)


Heart rate is looked upon in psychophysiology as one of the easily obtainable tale-bearers of the autonomic system’s condition. For most autonomic efference the final common pathway originates in the medulla oblongata; this region of the CNS is held responsible for the tonic activities of the sympathetic and parasympathetic system and their interplay (Koizumi and Brooks, 1980). However, the medulla is not “the” autonomic center by itself; it takes part in the complex interaction between different regions in the CNS where somatic and autonomic functions are tuned in response to environmental stimuli. Not only do we find in the medulla the motor neurons of the vagus nerve, controlling such functions as heart rate and activity of the upper intestinal tract, it also contains the centers for the automatic control of respiration.


Heart Rate Variability Vagus Nerve Vagus Nerve Stimulation Respiratory Sinus Arrhythmia Sinoatrial Node 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borst, C., and Karemaker, J. M., 1983, Time delays in the human baroreceptor reflex, J. Auton. Nervous Sys., 9:399–409.CrossRefGoogle Scholar
  2. Brown, G. L., and Eccles, J. C., 1934, The action of a single vagal volley on the rhythm of the heart beat, J. Physiol. (London), 82:211–241.Google Scholar
  3. Donders, F. C., 1868, Zur Physiologie des Nervus vagus, Pfluegers Arch. ges. Physiol., 1:331–361.CrossRefGoogle Scholar
  4. Eckberg, D. L., 1983, Human sinus arrhythmia as an index of vagal cardiac outflow, J. Appl. Physiol., 54:961–966.PubMedGoogle Scholar
  5. Heymans, C., and Neil, E., 1954, “Reflexogenic Areas of the Cardiovascular System”, Churchill, London.Google Scholar
  6. Jalife, J., Slenter, V. A. J., Salata, J. J., and Michaels, D. C., 1983, Dynamic control of pacemaker activity in the mammalian sinoatrial node, Circ. Res., 52:642–656.PubMedGoogle Scholar
  7. Koepchen, H. P., Wagner, P.-H., and Lux, H. D., 1961, Ueber die Zusammenhaenge zwischen zentrale Erregbarkeit, reflektorischen Tonus und Atemrhythmus bei der nervoesen Steuerung des Herzfrequenz, Pfluegers Arch. ges. Physiol., 273:443–465.CrossRefGoogle Scholar
  8. Koizumi, K., and Brooks, C. M., 1980, The autonomic system and its role in controlling body functions, Chapter 33 in: “Medical Physiology”, 14th edition, V. B. Mountcastle, ed., C. V. Mosby Comp., St. Louis.Google Scholar
  9. Kunze, D. L., 1972, Reflex discharge patterns of cardiac vagal efferent fibres, J. Physiol. (London), 222:1–15.Google Scholar
  10. Levy, M. N., Martin, P. J., Iano, T., and Zieske, H., 1969, Paradoxical effect of vagus nerve stimulation on heart rate in dogs, Circ. Res., 25:303–314.PubMedGoogle Scholar
  11. Levy, M. N., Iano, T., and Zieske, H., 1972, Effects of repetitive bursts of vagal activity on heart rate, Circ. Res., 30:186–195.PubMedGoogle Scholar
  12. Levy, M. N., Wexberg, S., Eckel, C., and Zieske, H., 1978, The effect of changing interpulse intervals on the negative chronotropic response to repetitive bursts of vagal stimuli in the dog, Circ. Res., 43:570–576.PubMedGoogle Scholar
  13. Michaels, D. C., Slenter, V. A. J., Salata, J. J., and Jalife, J., 1983, A model of dynamic vagus-sinoatrial node interactions, Am. J. Physiol., 245:H1043–H1053.PubMedGoogle Scholar
  14. Winfree, A. T., 1980, “The Geometry of Biological Time”, Springer Verlag, New York.Google Scholar
  15. Winfree, A. T., 1983, Sudden cardiac death: a problem in topology, Sci. Amer., 248:118–131.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John M. Karemaker
    • 1
  1. 1.Department of Physiology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations