Integrative Control Mechanisms for Cardiorespiratory and Somatomotor Functions in the Reticular Formation of the Lower Brain Stem

  • P. Langhorst
  • G. Schulz
  • M. Lambertz
Part of the NATO ASI Series book series (NSSA, volume 114)


From the functional point of view it is well accepted that only close interactions between cardiorespiratory and somatomotor control systems guarantee the integrity of organisms in all conditions of everyday life [30,31,83]. Characteristic modes of coordinations of somatomotor and autonomic innervation patterns determine the actual behavior. Both components of behaviorsomatomotor and autonomic — are not merely running parallel, but depend on each other. Adequate autonomic innervation enables the organism to realize somatomotor activity. On the other hand, the somatomotor nervous system assists the autonomic nervous system in homeostatic regulation. The functional synergy of the autonomic and the somatomotor nervous system was distinctly elaborated by W. R. Hess and by W. B. Cannon [15,30,31]. W. R. Hess discerned two functional states: an ergotropic one in which the autonomic nervous system supports the somatomotor system during intensive physical work and a trophotropic one in which the somatomotor system supports the autonomic nervous system in regulating assimilation and restitution of cell energy. This requires nervous structures responsible for integration of somatomotor and autonomic nervous activity.


Reticular Formation Discharge Pattern Respiratory Sinus Arrhythmia Discharge Frequency Period Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. B. Adrian, D. W. Bronk, and G. Phillips, Discharges in mammalian sympathetic nerves, J. Physiol. (London), 74:115–133 (1932).Google Scholar
  2. 2.
    R. S. Alexander, Tonic and reflex functions of medullary sympathetic cardiovascular centers, J. Neurophysiol., 9:205–217 (1946).PubMedGoogle Scholar
  3. 3.
    V. E. Amassian, and R. V. De Vito, Unit activity in reticular formation and nearby structures, J. Neurophysiol., 17:575–603 (1954).PubMedGoogle Scholar
  4. 4.
    L. M. N. Bach, Relationship between bulbar respiratory, vasomotor and somatic facilitatory and inhibitory areas, Am. J. Physiol., 171:417–435 (1952).PubMedGoogle Scholar
  5. 5.
    H. L. Batsel, Localization of bulbar-respiratory center by microelectrode sounding, Exp. Neurol., 9:410 (1964).CrossRefGoogle Scholar
  6. 6.
    R. v. Baumgarten, A. Mollica and G. Moruzzi, Modulierung der Entladungs-frequenz einzelner Zellen der Substantia reticularis durch corticofugale und cerebelläre Impulse, Pflügers Arch. ges. Physiol., 259:56–78 (1954).CrossRefGoogle Scholar
  7. 7.
    R. v. Baumgarten, A. v. Baumgarten and K. P. Schaefer, Beitrag zur Lokalisationsfrage bulboreticulärer respiratorischer Neurone der Katze, Pflügers Arch. ges. Physiol., 264:217 (1957).CrossRefGoogle Scholar
  8. 8.
    M. Bonvallet, P. Dell and D. Hiebel, Tonus sympathique et activité électrique corticale, EEG clin. Neurophysiol., 6:119–144 (1954).CrossRefGoogle Scholar
  9. 9.
    W. M. M. Boothby, The determination of the circulation rate in men at rest and work, Am. J. Physiol., 37:383–415 (1915).Google Scholar
  10. 10.
    M. A. Brazier, The historical development of neurophysiology, in: “Handbook of Physiology, Section I, Neurophysiology, vol. 1”, J. Field, H. W. Magoun and V. E. Hall, eds., American Physiological Society, Washington (1959).Google Scholar
  11. 11.
    P. Broca, Remarques sur le siège de la faculté du langage articulé, Bull. Soc. Anthrop., 6 (1861).Google Scholar
  12. 12.
    A. Brodai, The reticular formation of the brain stem. Anatomical aspects and functional correlations, in: “The Henderson Trust Lecture”, Oliver & Boyd, Edinburgh (1957).Google Scholar
  13. 13.
    S. Ramon y Cajal, Contribución al estudio de los ganglios de la substancia reticular del bulbo, citation in: Trab. Laborat. Invest. Biol. Univ., 7 (1909).Google Scholar
  14. 14.
    H. Camerer, M. Stroh-Werz, B. Krienke and P. Langhorst, Postganglionic sympathetic activity with correlation to heart rhythm and central cortical rhythms, Pflügers Arch. ges. Physiol., 370:221–225 (1977).CrossRefGoogle Scholar
  15. 15.
    W. B. Cannon, Bodily changes in pain, hunger, fear and rage. An account of recent researches into the function of emotional excitement, Appleton, New York, London (1929).Google Scholar
  16. 16.
    M. I. Cohen, Neurogenesis of respiratory rhythm in the mammal, Physiol. Rev., 59:1105–1173 (1979).PubMedGoogle Scholar
  17. 17.
    W. Delius, K. E. Hagbarth, A. Hongell and B. G. Wallin, General characteristics of sympathetic activity in human muscle nerves, Acta Physiol. Scand., 84:65–81 (1972).PubMedCrossRefGoogle Scholar
  18. 18.
    P. Dell, M. Bonvallet and A. Hugelin, Tonus sympathique, adrénaline et controle de la motricité spinale, EEG clin. Neurophysiol., 6:599–618 (1954).CrossRefGoogle Scholar
  19. 19.
    C. Dittmar, Über die Lage des sogenannten Gefäßzentrums in der Medulla oblongata, Ber. Verh. sächs. Ges. Wiss. Leipzig, Math. Phys Cl., 25:449–469 (1873).Google Scholar
  20. 20.
    K. Dittmar, Aktivitätsmuster reticulärer Hirnstammneurone mit Beziehungen zu Änderungen des arteriellen Blutdrucks, des Interpleuraldrucks und des Synchronisationsgrades des EEGs, Thesis, Berlin (1977).Google Scholar
  21. 21.
    K. Dittmar, M. Werz, H. Camerer, and P. Langhorst, Relations between discharge patterns of rhythmically active neurons in the reticular formation and simultaneously occurring rhythmic events in EEG, blood pressure and respiration, Pflügers Arch. ges. Physiol., 339:R78 (1973).Google Scholar
  22. 22.
    K. Dittmar, P. Langhorst, and M. Werz, Relations between the degree of rhythmicity of single reticular brain stem neurons and arterial blood pressure, respiration and EEG, Pflügers Arch. ges. Physiol., 347:R19 (1974).CrossRefGoogle Scholar
  23. 23.
    M. J. P. Flourens, Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés, Crebot, Paris (1824).Google Scholar
  24. 24.
    F. M. Fouad, R. C. Tarazi, C. M. Ferrario, S. Fighaly, and C. Alicandri, Assessment of parasympathetic control of heart rate by a noninvasive method, Am. J. Physiol., 246:H838-H842 (1984).PubMedGoogle Scholar
  25. 25.
    F. J. Gall, Sur les fonctions du cerveau et sur celles de chacune de ses parties, 6 vols., Baillière, Paris (1825).Google Scholar
  26. 26.
    R. Gesell, J. Bricker, and C. Magee, Structural and functional organization of the central mechanism controlling breathing, Am. J. Physiol., 117:423–452 (1936).Google Scholar
  27. 27.
    G. L. Gebber, and S. M. Barman, Brainstem vasomotor circuits involved in the genesis and entrainment of sympathetic nervous rhythms, Prog. Brain Res., 47:61–75 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Haller, Elementa physiologiae corporis humani, Lausanne (1769).Google Scholar
  29. 29.
    E. Hering, Über Atembewegungen des Gefäßsystems, S. Ber. Akad. Wiss.Wien, Math.-Naturwiss. Cl., 2, Abt. 60:829–836 (1869).Google Scholar
  30. 30.
    W. R. Hess, Über die Wechselbeziehungen zwischen psychischen und vegetativen Funktionen, Schweiz. Arch. Neurol. Neurochir. Psychiatr., 15:260–277 (1924).Google Scholar
  31. 31.
    W. R. Hess, Über die Wechselbeziehungen zwischen psychischen und vegetativen Funktionen, Arch. Neurol., 16:36–55 (1925).Google Scholar
  32. 32.
    W. R. Hess, Das physiologische Zusammenspiel von Kreislauf und Atmung, Verh. Dt. Ges. Kreislaufforsch., 8, Tagung (1935).Google Scholar
  33. 33.
    C. Heymans, and J. J. Bouckaert, Sinus caroticus and respiratory reflexes, J. Physiol. (London), 69:254–266 (1930).Google Scholar
  34. 34.
    S. M. Hilton, and K. M. Spyer, Participation of the anterior hypothalmus in the baroreceptor reflex, J. Physiol. (London)., 218:271 (1971).Google Scholar
  35. 35.
    G. Holstege, H. G. J. M. Kuypers, and R. C. de Boer, Anatomical evidence for direct brainstem projections to the somatic motoneuronal cell groups and autonomic pre-ganglionic cell groups in cat spinalcord, Brain Res., 171:329–333 (1969).CrossRefGoogle Scholar
  36. 36.
    E. v. Holst, Über ölen Prozeß der zentralnervösen Koordination, Pflügers Arch, ges. Physiol., 236:149–158 (1935).CrossRefGoogle Scholar
  37. 37.
    E. v. Holst, Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalysen, Erg. Physiol., 42:228–306 (1939).Google Scholar
  38. 38.
    J. H. Jackson, Evolution and dissolution of the nervous system, in; “Selected Writings of John Hughlings Jackson”, (Croonian Lectures, 1884), J. Taylor, ed., Basic Books, New York (1958).Google Scholar
  39. 39.
    L. E. King, E. M. Blair, and W. E. Garrey, The inspiratory augmentation of proprioceptive reflexes. A study of the knee jerk and the Achilles reflex, Am. J. Physiol., 97:329–342 (1931).Google Scholar
  40. 40.
    E. Koch, Die Irradiation der pressoreceptorischen Kreislaufréflexe, Klin. Wschr., 2:225–227 (1932).CrossRefGoogle Scholar
  41. 41.
    A. Koelliker, “Handbuch der Gewebelehre des Menschen, Bd. 2: Nervensystem des Menschen und der Tiere”, Engelmann, Leipzig (1896).Google Scholar
  42. 42.
    H. P. Koepchen, P. Langhorst, and P. H. Wagner, Methodik und erste Ergebnisse extracellulärer Mikroableitungen aus dem Rhombencephalon des Hundes, Pflügers Arch. ges. Physiol., 272:76 (1960).Google Scholar
  43. 43.
    H. P. Koepchen, “Die Blutdruckrhythmik”, Steinkopff-Verlag, Darmstadt (1962).Google Scholar
  44. 44.
    H. P. Koepchen, P. Langhorst, H. Seller, J. Polster, and P. H. Wagner, Neuronale Aktivität im unteren Hirnstamm mit Beziehungen zum Kreislauf, Pflügers Arch. ges. Physiol., 294:40–64 (1967).CrossRefGoogle Scholar
  45. 45.
    H. P. Koepchen, H. Seller, J. Polster, and P. Langhorst, Über die Fein-Vasomotorik der Muskelstrombahn und ihre Beziehung zur Ateminnervation, Pflügers Arch. ges. Physiol., 264:285 (1968).Google Scholar
  46. 46.
    H. P. Koepchen, P. Langhorst, and H. Seller, The problem of identification of autonomie neurones in the lower brain stem, Brain Res., 87:375–393 (1975).PubMedCrossRefGoogle Scholar
  47. 47.
    H. P. Koepchen, Zentralnervöse und reflektorische Steuerung der Herzfrequenz, in: “Autonome Innervation des Herzens”, B. Brisse, and F. Bender, eds., Steinkopff-Verlag, Darmstadt (1982).Google Scholar
  48. 48.
    P. I. Korner, Integrative neural cardiovascular control, Physiol.Rev., 51:311–367 (1971).Google Scholar
  49. 49.
    P. Langhorst, and M. Werz, Concept of functional organization of the brainstem “cardiovascular center”, in: “Central Rhythmic and Regulation”, W. Umbach, and H. P. Koepchen, eds., Hippokrates-Verlag, Stuttgart (1974).Google Scholar
  50. 50.
    P. Langhorst, M. Stroh-Werz, K. Dittmar, and H. Camerer, Facultative coupling of reticular neuronal activity with peripheral cardiovascular and central cortical rhythms, Brain Res., 87:407–418 (1975).PubMedCrossRefGoogle Scholar
  51. 51.
    P. Langhorst, M. Lambertz, K. Dittmar, G. Schulz, and B. Schulz, Oscillations of discharge frequency of blood pressure dependent neurones in the lower brainstem of the dog similar to respiratory rhythm, Proc. Int. Union Physiol. Sci., vol. XIII:1263 (1977).Google Scholar
  52. 52.
    P. Langhorst, B. Schulz, M. Lambertz, G. Schulz, H. Camerer, and M. Stroh-Werz, Dynamic characteristics of the “unspecific brainstem system”, in: “Central Interactions between Respiratory and Cardiovascular Control Systems”, H. P. Koepchen, S. M. Hilton, and A. Trzebski, eds., Springer-Verlag, Berlin, Heidelberg, New York (1980).Google Scholar
  53. 53.
    P. Langhorst, G. Schulz, M. Lambertz, and B. Krienke, Funktionelle Organisation eines gemeinsamen Hirnstammsystems für Kreislauf-, Atmungs- und allgemeine Aktivitätssteuerung, in: “Zentralvegetative Regulationen und Syndrome”, R. Schiffter, ed., Springer-Verlag, Berlin, Heidelberg, New York (1980).Google Scholar
  54. 54.
    P. Langhorst, M. Lambertz, and G. Schulz, Central control and inter- actions affecting sympathetic and parasympathetic activity, J. Auton. Nerv. Syst,. 4:149–163 (1981).PubMedCrossRefGoogle Scholar
  55. 55.
    P. Langhorst, B. Schulz, G. Schulz, and M. Lambertz, Reticular formation of the lower brainstem. A common system for cardiorespiratory and somatomotor functions: discharge patterns of neighboring neurons influenced by cardiovascular and respiratory afferents, J. Auton. Nerv. Syst., 9:411–432 (1983).PubMedCrossRefGoogle Scholar
  56. 56.
    P. Langhorst, G. Schulz, and M. Lambertz, Oscillating neuronal network of the “common brainstem system”, in: “Mechanisms of Blood Pressure Waves”, K. Miyakawa, H. P. Koepchen, and C. Polosa, eds., Springer-Verlag, Berlin, Heidelberg, New York, pp. 257–275 (1984).Google Scholar
  57. 57.
    P. Lindgren, Localization and function of the medullary vasomotor center in infracollicularly decerebrated cats, Circulat. Res., 9:250 (1961).PubMedGoogle Scholar
  58. 58.
    T. Lumsden, Observations on the respiratory centers in the cat, J.Physiol. (London), 57:153–160 (1922/23).Google Scholar
  59. 59.
    A. R. Luria, “Higher cortical functions in man”, Basic Books Inc. Publishers, New York (1980).CrossRefGoogle Scholar
  60. 60.
    X. Machne, I. Calma, and H. W. Magoun, Unit activity of central cephalic brainstem in EEG arousal, J. Neurophysiol., 18:547–558 (1953).Google Scholar
  61. 61.
    F. Magni, and W. B. Willis, Identification of reticular formation neurons by intracellular recording, Arch. ital. Biol., 101:681–702 (1963).PubMedGoogle Scholar
  62. 62.
    H. W. Magoun, Caudal and cephalic influences of the brainstem reticular formation, Physiol. Rev., 30:459–474 (1950).PubMedGoogle Scholar
  63. 63.
    L. C. A. Meyer, “Anatomisch-physiologische Abhandlungen vom Gehirn”, Berlin, Leipzig (1779), citation in: A. R. Luria, “Higher cortical functions in man”, Basic Books Inc., New York (1980).Google Scholar
  64. 64.
    J. Meyer-Lohmann, Respiratory influence upon the lumbar extensor motor system of decerebrated cats, in: “Central Rhythmic and Regulation”, W. Umbach, and H. P. Koepchen, eds., Hippokrates-Verlag, Stuttgart (1974).Google Scholar
  65. 65.
    A. Mollica, G. Moruzzi, and R. Naquet, Décharges réticulaires induites par la polarisation du cervelet. Leur rapports avec le tonus postural et la réaction d’eveil, Erg. clin. Neurophysiol., 5:571–584 (1953).CrossRefGoogle Scholar
  66. 66.
    M. Monnier, Les centres végétatives bulbaires, Arch. int. Physiol., 49:455–463 (1939).CrossRefGoogle Scholar
  67. 67.
    G. Moruzzi, and H. W. Magoun, Brainstem reticular formation and activation of the EEG, EEG clin. Neurophysiol., 1:455–474 (1949).Google Scholar
  68. 68.
    G. Moruzzi, The functional significance of the ascending reticular system, Arch. ital. Biol., 96:17–28 (1958).Google Scholar
  69. 69.
    P. H. Owsjannikow, Die tonischen und reflektorischen Zentren der Gefäßnerven, Ber. Verh. Sächs. Ges. Wiss. Leipzig, Math. Phys. Cl., 23:135–148 (1871).Google Scholar
  70. 70.
    O. Pompeiano, Reticular formation, in: “Handbook of Sensory Physiology, vol. 2: Somato-Sensory System”, A. Iggo, ed., Springer-Verlag, Berlin, Heidelberg, New York (1973).Google Scholar
  71. 71.
    S. W. Porges, P. M. McCabe, and B. G. Yongue, Respiratory heart rate interactions: psychophysiological implications for pathophysiology and behavior, in: “Perspectives in Cardiovascular Psycho-physiology”, J. T. Cacioppo, and R. E. Petty, eds., Guilford Press, New York (1982).Google Scholar
  72. 72.
    N. N. Preobrazhenskii, Microelectrode recording of activity from neurones in vasomotor centre, Fed. Proc, 25:T18–22 (1966).Google Scholar
  73. 73.
    A. C. Przybyla, and S. C. Wang, Neurophysiological characteristics of cardiovascular neurones in the medulla oblongata of the cat, J. Neurophysiol., 30:645–660 (1967).PubMedGoogle Scholar
  74. 74.
    P. Rhines, and H. W. Magoun, Brainstem facilitation of cortical motor response, J. Neurophysiol., 9:219–229 (1946).PubMedGoogle Scholar
  75. 75.
    G. F. Rossi, and A. Zanchetti, The brainstem reticular formation. Anatomy and physiology, Arch. ital. Biol., 95:203–435 (1957).Google Scholar
  76. 76.
    G. C. Salmoiraghi, and B. D. Burns, Notes on mechanism of rhythmicrespiration, J. Neurophysiol., 23:14–26 (1960).PubMedGoogle Scholar
  77. 77.
    G. C. Salmoiraghi, “Cardiovascular” neurons in the brainstem of the cat, J. Neurophysiol., 25:182–197 (1962).PubMedGoogle Scholar
  78. 78.
    M. E. Scheibel, A. B. Scheibel, K. Mollica, and G. Moruzzi, Conver- gence and interaction of afferent impulses on single units of reticular formation, J. Neurophysiol., 18:309–331 (1955).PubMedGoogle Scholar
  79. 79.
    M. E. Scheibel, and A. B. Scheibel, Structural substrates for integrative patterns in the brainstem core,in: “Reticular Formation of the Brain”, Henry Ford Hospital Symposium, H. H. Jasper, and L. D. Proctor, eds., Little, Brown & Co., Boston (1958).Google Scholar
  80. 80.
    W. Schmidt-Vanderheyden, L. Heinich, and H. P. Koepchen, Investigations into the fluctuations of proprioceptive reflexes in man, I: Fluctuations of the patellar tendon reflex and their relation to the vegetative rhythms during spontaneous respiration, Pflügers Arch. ges. Physiol., 317:72–83 (1970).CrossRefGoogle Scholar
  81. 81.
    F. J. Schulte, H.-D. Henatsch, and W. Busch, Uber den Einfluß der Carotis-sinus-Sensibilität auf die spinalmotorischen Systeme, Pflügers Arch. ges. Physiol., 259:248–263 (1959).Google Scholar
  82. 82.
    B. Schulz, M. Lambertz, G. Schulz, and P. Langhorst, Reticular for- mation of the lower brainstem. A common system for cardiorespiratory and somatomotor functions: discharge patterns of neighboring neurons influenced by somatosensory afferents, J. Auton. Nerv. Syst., 9:433–449 (1983).PubMedCrossRefGoogle Scholar
  83. 82a.
    G. Schulz, M. Lambertz, B. Schulz, and P. Langhorst, Reticular formation of the lower brainstem. A common system for cardiorespiratory and somatomotor functions: cross-correlation analysis of discharge patterns of neighboring neurons, J. Auton. Nerv. Syst., 12:35–62 (1985).PubMedCrossRefGoogle Scholar
  84. 83.
    S. Schweitzer, “Die Irradiation autonomer Reflexe”, Verlag von S. Karger, Basel (1937).Google Scholar
  85. 84.
    J. P. Segundo, T. Takenaka, and H. Encabo, Somatic sensory properties of bulbar reticular neurons, J. Neurophysiol., 30:1221–1238 (1967).PubMedGoogle Scholar
  86. 85.
    H. Seller, P. Langhorst, D. Richter, and H. P. Koepchen, Uber die Abhängigkeit der pressoreceptorischen Hemmung des Sympathicus von der Atemphase und ihre Auswirkung in der Vasomotorik, Pflügers Arch. ges. Physiol., 302:300 (1968).CrossRefGoogle Scholar
  87. 86.
    C. S. Sherrington, Decerebrate rigidity and reflex coordination of movement, J. Physiol. (London), 22:319 (1898).Google Scholar
  88. 87.
    J. M. Siegel, Behavioral functions of the reticular formation, BrainRes. Rev., 1:69–105 (1979).CrossRefGoogle Scholar
  89. 88.
    O. A. Smith, Reflex and central mechanisms involved in the control of the heart and circulation, Ann. Rev. Physiol., 36:93 (1974).CrossRefGoogle Scholar
  90. 89.
    J. M. Sprague, and W. W. Chambers, Control of posture by reticular formation and cerebellum in the intact anesthetized and unanes-thetized decerebrated cat, Am. J. Physiol., 176:52–64 (1954).PubMedGoogle Scholar
  91. 90.
    E. Taber, The cytoarchitecture of the brainstem of the cat, I: brain- stem nuclei of cat, J. comp. Neurol., 116:27–70 (1961).PubMedCrossRefGoogle Scholar
  92. 91.
    F. Valverde, Reticular formation of the pons and medulla oblongata. A Golgi study, J. comp. Neurol., 116:71–99 (1961).PubMedCrossRefGoogle Scholar
  93. 92.
    H. Weidinger, L. Fedina, H. Kehrel, and H. Schaefer, Über die Lokalisation des “bulbären sympathischen Zentrums” und seine Beeinflussung durch Atmung und Blutdruck, Z. Kreisl.-Forsch.., 50:229 (1961).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • P. Langhorst
    • 1
  • G. Schulz
    • 1
  • M. Lambertz
    • 1
  1. 1.Institute of PhysiologyThe Free University of BerlinBerlin 33Germany

Personalised recommendations