Advertisement

The Thermodynamics of Mixed Solvent Cluster Ions: K+(CH3OH)n(H2O)m

  • R. G. Keesee
  • D. H. Evans
  • A. W. CastlemanJr.

Abstract

One of the motivations for research on cluster ions is the parallel that the growth of cluster ions has with phenomena such as nucleation1,2 and solvation.3,4 For instance, the thermodynamics involved in the clustering of molecules about ions have been related to single ion heats of solvation.5,6 Most studies of clustering have been concerned with the sequential attachment of one particular species to an ion, as evident in a recent compilation7 of thermodynamic data on clusters ions. Few studies of competitive clustering by two different solvent species to yield mixed solvent cluster ions have been performed. In such systems, clustering may be enhanced or hindered by solvent-solvent interactions. Furthermore, the environment, as for example the natural atmosphere,8 is such that mixed cluster ions are prevalent and data for single component systems is inadequate. The purpose of this study is to expand the data base for binary solvent systems and to explore relationships with condensed phase binary solutions. Specifically, we have chosen to investigate the competitive clustering of water and methanol onto the potassium ion K+.

Keywords

Increase Cluster Size Single Component System Binary Solvent System Solvent Species Cluster Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. W. Castleman, Jr., Adv. Coll. Interface Sci. 10:73 (1979).CrossRefGoogle Scholar
  2. 2.
    A. W. Castleman, Jr., P. M. Holland, and R. G. Keesee, J. Chem. Phys. 68:1760 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    P. Kebarle, Mod. Aspects Electrochem. 9:1 (1974).CrossRefGoogle Scholar
  4. 4.
    A. W. Castleman, Jr. and R. G. Keesee, Acc. Chem. Res., in press.Google Scholar
  5. 5.
    M. Arshadi, R. Yamadagni, and P. Kebarle, J. Phys. Chem. 74:1475 (1970).CrossRefGoogle Scholar
  6. 6.
    N. Lee, R. G. Keesee, and A. W. Castleman, Jr., J. Coll. Interface Sci. 75:555 (1980).CrossRefGoogle Scholar
  7. 7.
    R. G. Keesee and A. W. Castleman, Jr., J. Phys. Chem. Ref. Data 15:1011 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    R. G. Keesee and A. W. Castleman, Jr., J. Geophys. Res. 90:5885 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    A. W. Castleman, Jr., P. M. Holland, D. M. Lindsay, and K. I. Peterson, J. Am. Chem. Soc. 100:6039 (1978).CrossRefGoogle Scholar
  10. 10.
    S. K. Searles and P. Kebarle, Can. J. Chem. 47:2619 (1969).ADSCrossRefGoogle Scholar
  11. 11.
    B. L. Upschulte, F. J. Schelling, R. G. Keesee, and A. W. Castleman, Jr., Chem. Phys. Lett. 111:389 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    J. D. Payzant, A. J. Cunningham, and P. Kebarle, Can. J. Chem. 51:3242 (1973).CrossRefGoogle Scholar
  13. 13.
    J. Sunner, N. Nishizawa, and P. Kebarle, J. Phys. Chem. 85:1814 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. G. Keesee
    • 1
  • D. H. Evans
    • 1
  • A. W. CastlemanJr.
    • 1
  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations