Advertisement

Collisional Electron Transfer to Neutral Clusters by High-Rydberg Rare Gas Atoms

  • Tamotsu Kondow

Abstract

High-Rydberg rare gas atoms are allowed to collide with various van der Waals clusters (CO2, CH3CN, SF6, CCl4 etc), to which the outermost electrons (Rydberg electron) having kinetic energies of 10 meV are found to be collisionally transferred. As a result, many cluster ions which can scarcely be generated by conventional techniques are produced with high efficiency. Systematic analyses of these mass spectroscopic data provide information on the electron affinities of the clusters and relaxation involved in the ionization. The experimental techniques and several typical examples of the analyses will be presented, together with related topics and future prospects.

Keywords

Electron Affinity Stagnation Pressure Principal Quantum Number Electron Attachment Cluster Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Y. Hatano, in “Electronic and Atomic Collisions — Invited Papers”, D. C. Lorents, W. E. Mayerhof, and J. R. Peterson, eds., Elsevier Science Publishers B. V., Amsterdam (1986) p 153.Google Scholar
  2. (2).
    W. Lubitz and T. Nyrönen, J. Mag. Res. 41:17 (1980).Google Scholar
  3. (3).
    R. W. Fessenden and P. Neta, Chem. Phys. Lett. 18:14 (1973).ADSCrossRefGoogle Scholar
  4. (4).
    M. Matsuzawa, in “Rydberg States of Atoms and Molecules”, R. F. Stebbings and F. B. Dunning, eds., Cambridge University Press, Cambridge, U.K., (1983) p 267.Google Scholar
  5. (5).
    B. G. Zollars, C. Higgs, F. Lu, C. W. Walter, L. G. Gray, K. A. Smith, F. B. Dunning, and R. F. Stebbings, Phys. Rev. A. 32:3330 (1985).ADSCrossRefGoogle Scholar
  6. (6).
    T. F. Gallagher, in “Rydberg States of Atoms and Molecules”, R. F. Stebbings and F. B. Dunning, eds., Cambridge University Press, Cambridge, U.K., (1983) p 165.Google Scholar
  7. (7).
    P. J. Chantry, J. Chem. Phys. 57:3180 (1972).ADSCrossRefGoogle Scholar
  8. (8).
    R. S. Gohlke and L. H. Thompson, Anal. Chem. 40: 1004 (1968).CrossRefGoogle Scholar
  9. (9).
    T. Kondow and K. Mitsuke, J. Chem Phys. 83:2612 (1985).ADSCrossRefGoogle Scholar
  10. (10).
    K. Mituske, T. Kondow, and K. Kuchitsu, J. Phys. Chem. 90:1505 (1985).CrossRefGoogle Scholar
  11. (11).
    K. Mitsuke, T. Kondow, and K. Kuchiutsu, J. Phys. Chem. 90:1552 (1986).CrossRefGoogle Scholar
  12. (12).
    T. Kondow, in “Electronic and Atomic Collisions — Invited Papers”, D. C. Lorents, W. E. Meyerhof, and J. R. Peterson, eds., Elsevier Science Publishers B. V., (1986) p 517.Google Scholar
  13. (13).
    T. Kondow, J. Phys. Chem. (in press)Google Scholar
  14. (14).
    F. Williams, and E. D. Sprague, Acc. Chem. Res. 15:408 (1982).CrossRefGoogle Scholar
  15. (15).
    R. N. Compton, P. W. Reinhardt, and C. D. Cooper, J. Chem. Phys. 63:3821 (1975).ADSCrossRefGoogle Scholar
  16. (16).
    J. Pacansky, V. Wehlgren, and P. S. Bayus, J. Chem. Phys. 62:2740 (1975).ADSCrossRefGoogle Scholar
  17. (17).
    Y. Yoshioka and K. D. Jordan, J. Am. Chem. Soc. 102:2621 (1980).CrossRefGoogle Scholar
  18. (18).
    M. Tsukada (unpublished)Google Scholar
  19. (19).
    H. Adachi, M. Tsukada, and C. Satoko, J. Phys. Soc. Jpn. 4–5:875 (1978).Google Scholar
  20. (20).
    M. Tsukada, N. Shima, S. Tsuneyuki, and H. Kageshima, Proceedins on the NEC Symposium on Fundamental Approach to New Material Phases -Microclusters, Tokyo (1986).Google Scholar
  21. (21).
    J. L. Interna and P. J. Billquist, Rev. Sci. Instr. 57:748 (1986).ADSCrossRefGoogle Scholar
  22. (22).
    L. A. Bloomfield, M. E. Geusic, R. P. Freemam, and W. L. Brown, Chem. Phys. Lett. 121:33 (1985).ADSCrossRefGoogle Scholar
  23. (23).
    M. Knapp, O. Echt, D. Kreisle, and E. Recknagel, J. Chem. Phys. 85:636 (1986).ADSCrossRefGoogle Scholar
  24. (24).
    A. Stamatovic, K. Leiter, W. Ritter, K. Stephan, and T. D. Mark, J. Chem. Phys. 83:2942 (1985).ADSCrossRefGoogle Scholar
  25. (25).
    M. Knapp, O. Echt, D. Kreisle, T. D. Mark, and E. Recknagel, Chem. Phys. Lett. 126:225 (1986).ADSCrossRefGoogle Scholar
  26. (26).
    T. D. Märk, K. Leiter, W. Ritter, and A. Stamatovic, Phys. Rev. Lett. 55:2559 (1985).ADSCrossRefGoogle Scholar
  27. (27).
    M. Knapp, D. Kreisle, O. Echt, K. Sattler, and E. Recknagel, Surface Sci. 156:313 (1985).ADSCrossRefGoogle Scholar
  28. (28).
    H. Haberland, C. Ludewigt, H. -G. Schindler, and D. R. Worsnop, J. Chem. Phys. 81:3742 (1984).ADSCrossRefGoogle Scholar
  29. (29).
    H. Haberland, H. Langosch, H.-G. Schindler, and D. R. Worsnop, J. Phys. Chem. 88:3903 (1984).CrossRefGoogle Scholar
  30. (30).
    H. Haberland, C. Ludewigt, H. -G. Schindler, and D. R. Worsnop, Surface Sci. 156:157 (1985).ADSCrossRefGoogle Scholar
  31. (31).
    K. H. Bowen, G. W. Liesegang, R. A. Sanders, and D. R. Herschbach, J. Phys. Chem. 87:557 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Tamotsu Kondow
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceThe University of TokyoBunkyo-ku, Tokyo 113Japan

Personalised recommendations