Advertisement

Trapping Sites and Vibrational Modes of Ag2 in Rare Gas Matrices: A Computer Simulation

  • Paul S. Bechthold
  • Herbert R. Schober

Abstract

Computer simulations of disilver in fcc rare gas host lattices demonstrate, in agreement with experiment, that in xenon, krypton, and argon matrices one, two, and three trapping sites can be occupied, respectively. They can be identified by the observed and calculated vibrational frequencies. The observed external modes are found to be librations of the Ag2 molecule.

Keywords

Host Lattice Stable Configuration Trapping Site External Mode Single Vacancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Gruen and J. K. Bates, Inorg. Chem. 16, 2450 (1977).CrossRefGoogle Scholar
  2. 2.
    D. Leutloff and D. M. Kolb, Phys. Chem. 83, 666 (1979).Google Scholar
  3. 3.
    S. A. Mitchell, G. A. Kenney-Wallace, and G. A. Ozin, J. Am. Chem. Soc. 103, 6030 (1981).CrossRefGoogle Scholar
  4. 4.
    P. S. Bechthold, U. Kettler, and W. Krasser, Surf. Sci. 156, 875 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    U. L. Kettler, Ph.D. Thesis, Universität zu Köln (1984); (Berichte der Kernforschungsanlage Jülich No. 1980 (1985).Google Scholar
  6. 6.
    P. S. Bechthold, U. Kettler, and W. Krasser, Solid State Comm. 52, 347 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    P. S. Bechthold, U. Kettler, H. R. Schober, and W. Krasser, Z. Phys. D3, 263 (1986); P. S. Bechthold, this conference.ADSGoogle Scholar
  8. 8.
    P. S. Bechthold and H. R. Schober, to be published.Google Scholar
  9. 9.
    H. R. Schober, J. Phys. F7, 1127 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    C. M. Brown and M. L. Ginter, J. Mol. Spectr. 69, 25 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    V. I. Sradanov and D. S. Pešić, J. Mol. Spectr. 90, 27 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    K. A. Gingerich, J. Crystal Growth 9, 31 (1971);ADSCrossRefGoogle Scholar
  13. 12a.
    K. Hilpert and K. A. Gingerich, Ber. Bunsenges. Phys. Chem. 84, 739 (1980).CrossRefGoogle Scholar
  14. 13.
    H. Telle and U. Telle, Comp. Phys. Comm. 28, 1 (1982).ADSCrossRefGoogle Scholar
  15. 14.
    H. R. Glyde, J. Phys. C3, 810 (1970).ADSGoogle Scholar
  16. 15.
    J. H. Jaffe, A. Rosenberg, M. A. Hirshfeld, and N. M. Gailar, J. Chem. Phys. 43, 1525 (1965).ADSCrossRefGoogle Scholar
  17. 16.
    A. A. Abrahamson, Phys. Rev. 178, 76 (1969).ADSCrossRefGoogle Scholar
  18. 17.
    I. M. Torrens, Interatomic Potentials, Academic Press, New York (1972).Google Scholar
  19. 18.
    W. Ludwig, Ergebnisse der exakten Naturwissenschaften 35, 1 (1964).CrossRefGoogle Scholar
  20. 19.
    E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, London (1955).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Paul S. Bechthold
    • 1
  • Herbert R. Schober
    • 1
  1. 1.Kernforschungsanlage JülichInstitut für FestkörperforschungJülichGermany

Personalised recommendations