Cluster Spectroscopy: Variations in Ionization Potentials and Spectral Shifts as a Function of Degree of Aggregation and Studies of Cluster Fragmentation

  • A. W. CastlemanJr.
  • R. G. Keesee


Studies of trends in the variations of spectral features, ionization potentials, and dissociation processes of clusters as a function of degree of aggregation are presented. The results bear on such questions as the changing properties of systems undergoing transitions between the gas and the condensed phase, as well as the origin of magic numbers. Investigations of the spectral shifts of an electronic transition in a chromophore such as paraxylene or phenylacetylene show that clusters containing from 3 to 15 argon atoms all undergo a red shift of about 50 cm-1 as a limiting value in the S1 state. Evidence for spectroscopic changes between the gaseous and the condensed state is also apparent from the broadening of linewidths.

A major advance in the study of unimolecular dissociation has become available through the use of multiphoton ionization coupled with a reflectron introduced into the drift region of a time-of-flight mass spectrometer. Using single and two-color tunable pulsed lasers, the excess energy introduced into a cluster can be well controlled. The power of this method is demonstrated by the results of recent investigations of hydrogen bonded clusters such as ammonia and methyl alcohol and also clusters of rare gas atoms which, following ionization, lead to an internal ion-molecule reaction and subsequent cluster fragmentation. The role of dissociation and the influence of the thermochemical stability of cluster ions in effecting the appearance of magic numbers in certain cluster distributions is discussed. The application of this method in determining ionization potentials of probe molecules following successive clustering with a solvent species is also presented. The results of studies of dielectrics are contrasted with trends found for alkali metal systems.

A final related topic is that of internal ion-molecule reactions following multiphoton excitation of clusters. A finding of some importance is an internal Penning ionization process taking place in certain clusters leading to electron transfer between the chromophore and the solvent molecules. Findings of a delayed electron transfer reaction, having implications to the bulk condensed state, are also presented.


Ionization Potential Spectral Shift Magic Number Argon Atom Multiphoton Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. W. Castleman, Jr., in: Electronic and atomic collisions (J. Eichler, I.V. Hertel and N. Stolterfoht, Eds), Elsevier Science Publishers, Amsterdam, pp. 579–590 (1984).Google Scholar
  2. 2.
    A. W. Castleman, Jr. and R. G. Keesee, Chem. Rev. 86, 589 (1986).CrossRefGoogle Scholar
  3. 3.
    A. W. Castleman, Jr. and R. G. Keesee, “Clusters: Properties and Formation,” Ann. Rev. of Phys. Chem., in press.Google Scholar
  4. 4.
    A. W. Castleman, Jr. and R. G. Keesee, “Clusters: Bridging the Gas and Condensed Phases,” Accts. Chem. Res., in press.Google Scholar
  5. 5.
    A. W. Castleman, Jr. and T. D. Mark, in: Gaseous Ion Chemistry/Mass Spectrometry (J. H. Futrell, Ed.) John Wiley and Sons, pp. 259–303(1986).Google Scholar
  6. 6.
    M. F. Vernon, D. J. Krajnovich, H. S. Kwok, J. M. Lisy, Y. R. Shen, and Y. T. Lee, J. Chem. Phys. 77, 47 (1982);ADSCrossRefGoogle Scholar
  7. 6a.
    R. E. Miller, R. D. Watts and A. Ding, Chem. Phys. 83, 155 (1984);CrossRefGoogle Scholar
  8. 6b.
    P. M. Dehmer and S. T. Pratt, J. Chem. Phys. 76, 843 (1982).ADSCrossRefGoogle Scholar
  9. 7.
    O. Echt, P. D. Dao, S. Morgan, and A. W. Castleman, Jr. J. Chem. Phys. 82, 4076 (1985).ADSCrossRefGoogle Scholar
  10. 7a.
    See also O. Echt, S. Morgan, P. D. Dao, R. J. Stanley, and A. W. Castleman, Jr. Ber. Bunsenges. Phys. Chem. 88, 217 (1984).CrossRefGoogle Scholar
  11. 8.
    J. L. Durant, D. M. Rider, S. L. Anderson, F. D. Proch, and R. N. Zare, J. Chem. Phys. 80, 1817 (1984).ADSCrossRefGoogle Scholar
  12. 9.
    H. Kuhlewind, U. Boesl, R. Weinkauf, H. J. Neusser, and E. W. Schlag, Laser Chem. 3, 3 (1983).CrossRefGoogle Scholar
  13. 10.
    V. I. Karataev, B. A. Mamyrin, and D. V. Shmikk, Sov. Phys. Tech. Phys. 16, 1177 (1972);ADSGoogle Scholar
  14. 10a.
    V. A. Mamyrin, V. I. Karataev, D. V. Shmikk, and V. A. Zauglin, Sov. Phys. JETP 37, 45 (1973).ADSGoogle Scholar
  15. 11.
    P. D. Dao, S. Morgan, and A. W. Castleman, Jr., Chem. Phys. Lett. 111, 38 (1984).ADSCrossRefGoogle Scholar
  16. 12.
    P. D. Dao, S. Morgan, and A. W. Castleman, Jr., Chem. Phys. Lett. 113, 219 (1985).ADSCrossRefGoogle Scholar
  17. 13.
    S. Leutwyler, U. Even and J. Jortner, J. Chem. Phys. 79, 5769 (1983).ADSCrossRefGoogle Scholar
  18. 14.
    S. Basu, Advan. Quantum Chem. 1, 145 (1964).ADSCrossRefGoogle Scholar
  19. 15.
    D. H. Levy, Ann. Rev. Phys. Chem. 31, 197 (1980);ADSCrossRefGoogle Scholar
  20. 15a.
    A. Amirav, U. Even and J. Jortner, J. Chem. Phys. 71, 2319 (1979)ADSCrossRefGoogle Scholar
  21. 15b.
    A. Amirav, U. Even and J. Jortner, J. Chem. Phys. 75, 3770 (1981);ADSCrossRefGoogle Scholar
  22. 15c.
    A. M. Griffiths and P. A. Freedman, Chem. Phys. 63, 469 (1981);CrossRefGoogle Scholar
  23. 15d.
    A. Amirav and J. Jortner, Chem. Phys. 85, 19 (1984);ADSGoogle Scholar
  24. 15e.
    K. Rademann, B. Brutschy and H. Baumgartel, Chem. Phys. 80, 129 (1983).CrossRefGoogle Scholar
  25. 16.
    A.-M. Sapse (personal communication)Google Scholar
  26. 17.
    K. H. Fung, H. L. Selzle and E. W. Schlag, Z. Naturforsch 36a, 1257 (1981).ADSGoogle Scholar
  27. 18.
    J. Jortner, in: Vacuum Ultraviolet Radiation Physics (E. E Koch, R. Haensel, and C. Kunz, Eds.) Pergamon Press, Oxford, p. 291 (1974).Google Scholar
  28. 19.
    K. I. Peterson, P. D. Dao, R. W. Farley, and A. W. Castleman, Jr. J. Chera. Phys. 80, 1780 (1984).ADSCrossRefGoogle Scholar
  29. 20.
    A. Herrmann, S. Leutwyler, E. Schumacher, and L. Woste, Helv. Chem. Acta 61, 453 (1978).CrossRefGoogle Scholar
  30. 21.
    J. Buttet, Proc. Int. Symp. on Metal Clusters, Heidelberg, Apr. 7–11, 1986, p. 12.Google Scholar
  31. 22.
    A. W. Castleman, Jr. and R. G. Keesee, “Metallic Ions and Clusters: Formation, Energetics, and Reaction,” Zeitschrift fur Physik, in press.Google Scholar
  32. 23.
    J. L. Martins, J. Buttet, and R. Car, Phys. Rev. B 31, 1804 (1985).ADSCrossRefGoogle Scholar
  33. 24.
    M. M. Kappes, M. Schar, P. Radi, and E. Schumacher, J. Chem. Phys. 84 1863 (1986).ADSCrossRefGoogle Scholar
  34. 25.
    P. D. Dao, K. I. Peterson, and A. W. Castleman, Jr., J. Chem. Phys. 80 563 (1984).ADSCrossRefGoogle Scholar
  35. 26.
    A. W. Castleman, Jr., S. Morgan, O. Echt, and P. D. Dao, “Considerations of the Origin of Magic Numbers in Hydrogen Bonded Clusters,” to be submitted.Google Scholar
  36. 27.
    S. Morgan, R. G. Keesee and A. W. Castleman, Jr., “Studies of Clusters Using Laser Techniques: Dissociation Processes of Methanol Clusters Following Multiphoton Ionization,” Proc. 1986 CRDEC Scientific Conference on Obscuration and Aerosol Research, Aberdeen Proving Ground, MD, June 23–27, 1986, in press.Google Scholar
  37. 28.
    S. Morgan and A. W. Castleman, Jr., “Evidence of Delayed internal1 Ion Molecule Reactions Following the Multiphoton Ionization of Clusters: Variation in Reaction Channels in Methanol with Degree of Solvation,” submitted to J. Am. Chem. Soc.Google Scholar
  38. 29.
    L. M. Bass, R. D. Cates, M. F. Jarrold, N. J. Kirchner, and M. T. Bowers, J. Am. Chem. Soc. 105, 7024 (1983).CrossRefGoogle Scholar
  39. 30.
    R. G. Keesee and A. W. Castleman, Jr., J. Phys. Chem. Ref. Data, 15, 1011 (1986).ADSCrossRefGoogle Scholar
  40. 31.
    J. C. Kleingeld and N. M. M. Nibbering, Org. Mass Spectrom. 17, 136 (1982).CrossRefGoogle Scholar
  41. 32.
    O. Echt, M. Cook and A. W. Castleman, Jr., “Multiphoton Ionization of Rare Gas Clusters: Xen,” Chem. Phys. Lett., submitted.Google Scholar
  42. 33.
    O. Echt, K. Sattler, and E. Recknagel, Phys. Rev. Lett 47, 1121 (1981).ADSCrossRefGoogle Scholar
  43. 34.
    D. Kreisle, O. Echt, M. Knapp, and E. Recknagel, Phys. Rev. A 33, 768 (1986).ADSCrossRefGoogle Scholar
  44. 35.
    P. D. Dao and A. W. Castleman, Jr., J. Chera. Phys. 84, 1435 (1986).ADSCrossRefGoogle Scholar
  45. 36.
    Y. Hatano (personal communication); see also T. Wada, K. Shinsaka, H. Namba, and Y. Hatano, Can. J. Chem. 51, 2144 (1977).Google Scholar
  46. 37.
    C. Harris (personal communication) Univ. of California, Berkeley.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. W. CastlemanJr.
  • R. G. Keesee
    • 1
  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations