Inelastic Light Scattering from Metal Clusters: Some Recent Developments

  • Paul S. Bechthold


Most Raman and resonance Raman experiments on small metal aggregates have been performed with the scattering particles isolated in rare gas matrices. The matrices permit a high cluster density, but they also influence their spectroscopic properties. Cluster-support interactions become important and may cause a multiplication of vibrational modes, e.g., due to trapping site effects or isomerization processes. The least perturbed vibrational mode usually will be the totally symmetric one. External modes of the particle may appear which directly probe the interaction of the cluster with the matrix support at the particular trapping site. For silver dimers these were used to identify the geometries of various trapping sites by means of a computer simulation.

Clusters deposited on solid surfaces have been little studied by light scattering techniques, despite their importance in catalysis and surface enhanced Raman scattering. Germanium clusters have been probed by Raman scattering. Elastic forces between gold clusters on NaCl have been studied by surface Brillouin scattering.

A few light scattering experiments have been performed with van der Waals and molecular clusters in free jet expansions.


Surface Enhance Raman Scattering Gold Cluster Trapping Site Resonance Raman Spectrum Light Scattering Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. D. Morse, Chem. Rev. 86 (6), (1986) (in press).Google Scholar
  2. 2.
    U. Kreibig and L. Genzel, Surf. Sci. 156, 678 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    A. Givan and A. Loewenschuss, Chem. Phys. Lett. 62, 592 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    A. Kowalski, M. Czajkowski, and W. H. Breckenridge, Chem. Phys. Lett. 119, 368 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    P. S. Bechthold, U. Kettler, and W. Krasser, Solid State Comm. 52, 347 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    G. A. Ozin, H. Huber, and S. A. Mitchell, Inorg. Chem. 18, 2932 (1979).CrossRefGoogle Scholar
  7. 7.
    U. Kettler, P. S. Bechthold, and W. Krasser, Surf. Sci. 156, 867 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    W. Schulze and H. Abe, Faraday Symp. Chem. Soc. 14, 87 (1980).CrossRefGoogle Scholar
  9. 9.
    F. W. Froben and W. Schulze, Surf. Sci. 156, 765 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    H. Sontag and R. Weber, Chem. Phys. 70, 23 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    D. L.Rousseau, J. M. Friedman, and P. F. Williams in: Raman Spectroscopy, A. Weber (Ed.), Springer Verlag, Berlin, Heidelberg, New York (1979).Google Scholar
  12. 12.
    M. Moskovits and D. P. DiLella, ACS Symp. Ser. 179, 153 (1982).CrossRefGoogle Scholar
  13. 13.
    H. Schn’öckel, H. J. Göcke, and R. Elsper, Z. anorg. allg. Chem. 494, 78 (1982);CrossRefGoogle Scholar
  14. 13a.
    H. Schn’öckel, H. J. Göcke, and R. Elsper, H. Schnbckel, Z. anorg. allg. Chem. 510, 72 (1984).CrossRefGoogle Scholar
  15. 14.
    H. Sontag, B. Eberle, and R. Weber, Chem. Phys. 80, 279 (1983);CrossRefGoogle Scholar
  16. 14a.
    B. Eberle, H. Sontag, and R. Weber, Chem. Phys. 92, 417 (1985);ADSCrossRefGoogle Scholar
  17. 14b.
    B. Eberle, H. Sontag, and R. Weber, Surf. Sci. 156, 751 (1985).ADSCrossRefGoogle Scholar
  18. 15.
    M. Moskovits, D. P. DiLella, and D. P. Limm, J. Chem. Phys. 80, 626 (1984).ADSCrossRefGoogle Scholar
  19. 16.
    P. S. Bechthold, U. Kettler, and W. Krasser, Surf. Sci. 156, 875 (1985).ADSCrossRefGoogle Scholar
  20. 17.
    P. S. Bechthold, U. Kettler, H. R. Schober, and W. Krasser, Z. Phys. D3, 263 (1986).ADSGoogle Scholar
  21. 18.
    P. S. Bechthold and H. R. Schober (this conference).Google Scholar
  22. 19.
    U. Kettler, P. S. Bechthold, and W. Krasser, Chem. Phys. Lett. (in press).Google Scholar
  23. 20.
    S. A. Mitchell, G. A. Kenney-Wallace, and G. A. Ozin, J. Am. Chem. Soc. 103, 6030 (1981).CrossRefGoogle Scholar
  24. 21.
    Y. Endoh, G. Shirane, and J. Skalya, Phys. Rev. B 11, 1681 (1975).ADSCrossRefGoogle Scholar
  25. 22.
    W. Schulze, H.-U. Becker, and H. Abe, Chem. Phys. 35, 177 (1978).CrossRefGoogle Scholar
  26. 23.
    U. Kettler and Ph.D. Thesis, Universität zu Köln, (1984), (Berichte der Kernforschungsanlage Jülich No 1980 (1985)).Google Scholar
  27. 24.
    W. Schulze, H.-U. Becker, R. Minkwitz, and K. Manzel, Chem. Phys. Lett. 55, 59 (1978).ADSCrossRefGoogle Scholar
  28. 25.
    U. L. Kettler, P. S. Bechthold, and W. Krasser, (this conference).Google Scholar
  29. 26.
    H. Basch, J. Am. Chem. Soc. 103, 4657 (1981).CrossRefGoogle Scholar
  30. 27.
    J. Flad, G. Igel-Mann, H. Preuss, and H. Stoll, Chem. Phys. 90, 257 (1984).CrossRefGoogle Scholar
  31. 28.
    W. Andreoni and T. H. Upton (unpublished).Google Scholar
  32. 29.
    S. P. Walch and B. C. Laskowski, J. Chem. Phys. 84, 2734 (1986).ADSCrossRefGoogle Scholar
  33. 30.
    J. A. Howard, K. F. Preston, and B. Mile, J. Am. Chem. Soc. 103, 6226 (1981).CrossRefGoogle Scholar
  34. 31.
    K. Kernisant, G. A. Thompson, and D. M. Lindsay, J. Chem. Phys. 82, 4739 (1985).ADSCrossRefGoogle Scholar
  35. 32.
    M. Moskovits, Chem. Phys. Lett. 118, 111 (1985).ADSCrossRefGoogle Scholar
  36. 33.
    M. D. Morse, J. B. Hopkins, P. R. Langridge-Smith, and R. E. Smalley, J. Chem. Phys. 79, 5316 (1983).ADSCrossRefGoogle Scholar
  37. 34.
    E. A. Rohlfing and J. J. Valentini, Chem. Phys. Lett. 126, 113 (1986).ADSCrossRefGoogle Scholar
  38. 35.
    A. Otto, in: Light scattering in solids, Vol. 4, M. Cardona and G. Güntherodt (Eds.), Springer Verlag, Berlin, Heidelberg, New York (1984).Google Scholar
  39. 36.
    D. Roy and T. E. Furtak, Chem. Phys. Lett. 124, 299 (1986).ADSCrossRefGoogle Scholar
  40. 37.
    S. Hayashi, M. Ito, and H. Kanamori, Solid State Comm. 44, 75 (1982)ADSCrossRefGoogle Scholar
  41. 38.
    B. Hillebrands, R. Mock, G. Güntherodt, P. S. Bechthold, and N. Herres, to be published.Google Scholar
  42. 39.
    K. Reichelt and B. Lampert, Vaccuum 30, 383 (1980).CrossRefGoogle Scholar
  43. 40.
    K. Reichelt, B. Lampert, and H.-P. Siegers, Surf. Sci., 93, 159 (1980).ADSCrossRefGoogle Scholar
  44. 41.
    N. Herres, Ph.D. Thesis, Rheinisch Westfälische Technische Hochschule Aachen (1986).Google Scholar
  45. 42.
    J. C. Zanghi, J. J. Metois, and R. Kern, Surf. Sci. 52, 556 (1975), erratum 55, 761 (1976).ADSCrossRefGoogle Scholar
  46. 43.
    F. König, P. Oesterlin, and R. L. Byer, Chem. Phys. Lett., 88, 477 (1982).ADSCrossRefGoogle Scholar
  47. 44.
    H. P. Godfried and I. F. Silvera, Phys. Rev. Lett., 48, 1337 (1982).ADSCrossRefGoogle Scholar
  48. 45.
    G. A. Pubanz, M. Maroncelli, and J. W. Nibler, Chem. Phys. Lett. 120, 313 (1985).ADSCrossRefGoogle Scholar
  49. 46.
    M. Maroncelli, G. A. Hopkins, J. W. Nibler, and T. R. Dyke, J. Chem. Phys. 83, 2129 (1985).ADSCrossRefGoogle Scholar
  50. 47.
    W. Bronner, P. Oesterlin, and M. Schellhorn, Appl. Phys. B 34, 11 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Paul S. Bechthold
    • 1
  1. 1.Kernforschungsanlage JülichInstitut für FestkörperforschungJülichGermany

Personalised recommendations