The Nickel Dimer and Trimer

  • Irene Shim
  • Karl A. Gingerich


The chemical bonds and the low-lying electronic states of the molecules Ni2 and Ni3 have been investigated by performing all electron ab initio Hartree-Fock and configuration interaction calculations. The results reveal that the chemical bonds in Ni2 and Ni3 are of similar natures. Thus, in each molecule the bond is mainly due to a delocalized molecular orbital composed of the Ni 4s orbitals. The 3d electrons localize around the nuclei, and their weak interactions give rise to “bands” of low-lying electronic states. As for the Ni2 molecule, the lowest lying states of the linear Ni3 molecule are due to a localized hole in the 3dδ subshell of each Ni atom. The ground state of the Ni3 molecule has been derived as 5A2[...(18a1)2...(3a2)2(4a2)1(5a2)1....(13b1)2(14b1)1....(6b2)2 (7b2)1]. With the Ni-Ni bond distances fixed to 4.709 a.u., the bent Ni3 molecule with a Ni-Ni-Ni angle of 90° is found to be 0.08eV more stable than the linear molecule and 0.29eV more stable than the triangular molecule.


Hole State Linear Molecule Localize Hole Transition Metal Cluster Configuration Interaction Calculation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Faraday Symposia of the Royal Society of Chemistry No. 14, Diatomic Metals and Metallic Clusters (1980).Google Scholar
  2. 2.
    W. Weltner, Jr. and R.J. Van Zee, Ann. Rev. Phys. Chem. 35: 291 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    I. Shim, Kgl. Danske Vid. Selsk. Matt.-Fys. Medd. 41: 147 (1985).Google Scholar
  4. 4.
    M.D. Morse, Chem. Rev. in press.Google Scholar
  5. 5.
    C.C.J. Roothaan, Rev. Mod. Phys. 32: 179 (1960).MathSciNetADSCrossRefMATHGoogle Scholar
  6. 6.
    J. Almlöf in “Proceedings of the Second Seminar on Computational Problems in Quantum Chemistry, Max-Planck Institut, Munchen (1973).Google Scholar
  7. 7.
    The ALCHEMY program system is written at IBM Research Laboratory in San Jose, Ca., by P.S. Bagus, B. Liu, M. Yoshimine, and A.D. McLean.Google Scholar
  8. 8.
    C.R. Sarma and S. Rettrup, Theor. Chim. Acta (Berlin) 46: 63 (1977);Google Scholar
  9. 8a.
    C.R. Sarma and S. Rettrup, S. Rettrup and C.R. Sarma, Theor. Chim. Acta (Berlin) 46: 73 (1977).Google Scholar
  10. 9.
    H. Johansen, private communication.Google Scholar
  11. 10.
    A.J.H. Wachters, J. Chem. Phys. 52: 1033 (1970).ADSCrossRefGoogle Scholar
  12. 11.
    R.L. Martin and P.J. Hay, J. Chem. Phys. 75: 4539 (1981).ADSCrossRefGoogle Scholar
  13. 12.
    C.E. Moore, Nat. Bur. Stand. Circ. No. 467 (U.S. GPO, Washington, D.C. 1952) vol. 2.Google Scholar
  14. 13.
    I. Shim, J.P. Dahl, and H. Johansen, Int. J. Quantum Chem. 15: 311 (1979).CrossRefGoogle Scholar
  15. 14.
    I. Shim, Mol. Phys. 39: 185 (1980).ADSCrossRefGoogle Scholar
  16. 15.
    T.H. Upton and W.A. Goddard III, J. Am. Chem. Soc. 100: 5659 (1978).CrossRefGoogle Scholar
  17. 16.
    J.O. Noell, M.D. Newton, P.J. Hay, R.L. Martin, and F.W. Bobrowicz, J. Chem. Phys. 73: 2360 (1980).ADSCrossRefGoogle Scholar
  18. 17.
    M.D. Morse, G.P. Hansen, P.R.R. Langridge-Smith, L.-S. Zheng, M.E. Geusic, D.L. Michalopoulos, and R.E. Smalley, J. Chem. Phys. 80: 5400 (1984).ADSCrossRefGoogle Scholar
  19. 18.
    H. Basch, M.D. Newton, and J.W. Moskowitz, J. Chem. Phys. 73: 4492 (1980).ADSCrossRefGoogle Scholar
  20. 19.
    M. Tomonari, H. Tatewaki, and T. Nakamura, J. Chem. Phys. 85: 2875 (1986).ADSCrossRefGoogle Scholar
  21. 20.
    M. Moskovits and J.E. Hulse, J. Chem. Phys. 66: 3988 (1977).ADSCrossRefGoogle Scholar
  22. 21.
    M. Moskovits and D.P. DiLella, J. Chem. Phys. 72: 2267 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Irene Shim
    • 1
  • Karl A. Gingerich
    • 2
  1. 1.Chemical Physics, Chemistry Department BThe Technical University of DenmarkLyngbyDenmark
  2. 2.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations