Advertisement

Linearized Augmented Plane Wave (LAPW) Method for Isolated Clusters and Molecules

  • Henry Krakauer
  • Michael J. Mehl

Abstract

A linearized augmented plane wave (LAPW) method for isolated clusters or molecules is presented. This method avoids the use of a supercell geometry and is relatively easy to implement into an existing bulk LAPW computer code. As in the bulk LAPW method, the potential and charge density are represented by shape-unrestricted expansions, i.e. the potential and charge density are permitted to have full variation in all regions of space. Local density-functional-theory calculations have been performed for two test systems. Results obtained for a Cu atom are in excellent agreement with that of a standard atomic program. Calculations were also performed for the O2 molecule and are in excellent agreement with results obtained using standard molecular methods.

Keywords

Versus Versus Versus Coulomb Potential Versus Versus Versus Versus Reciprocal Lattice Vector Interstitial Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Korringa, Physica 13, 392 (1947);MathSciNetADSCrossRefGoogle Scholar
  2. 1a.
    W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).ADSCrossRefMATHGoogle Scholar
  3. 2.
    K. H. Johnson, J. Chem. Phys. 45, 3085 (1966);ADSCrossRefGoogle Scholar
  4. 2a.
    K. H. Johnson and F. C. Smith, Phys. Rev. Lett. 22, 1168 (1969).ADSCrossRefGoogle Scholar
  5. 3.
    O. K. Andersen, Phys. Rev. B 12, 3060 (1975).ADSCrossRefGoogle Scholar
  6. 4.
    O. K. Andersen and R. G. Woolley, Mol. Phys. 26, 905 (1973).ADSCrossRefGoogle Scholar
  7. 5.
    O. Gunnarsson, J. Harris, and R. O. Jones, Phys. Rev. B 15, 3027 (1977).ADSCrossRefGoogle Scholar
  8. 6.
    G. P. Kerker, A. Zunger, M. L. Cohen, and M. Schlüter, Solid State Commun. 32, 309 (1979).ADSCrossRefGoogle Scholar
  9. 7.
    E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24. 864 (1981).ADSCrossRefGoogle Scholar
  10. 8.
    S.-H. Wei and H. Krakauer, Phys. Rev. Lett. 55, 1200 (1985).ADSCrossRefGoogle Scholar
  11. 9.
    S.-H. Wei, H. Krakauer, and M. Weinert, Phys. Rev. B 32, 7792 (1985).ADSCrossRefGoogle Scholar
  12. 10.
    L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).ADSCrossRefGoogle Scholar
  13. 11.
    J. Bernholc and N. A. W. Holzwarth, J. Chem Phys. 81, 3987 (1984).ADSCrossRefGoogle Scholar
  14. 12.
    B. Delly and D. E. Ellis, J. Chem. Phys. 76, 1949 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Henry Krakauer
    • 1
  • Michael J. Mehl
    • 2
  1. 1.Department of PhysicsCollege of William and MaryWilliamsburgUSA
  2. 2.Condensed Matter Physics BranchNaval Research LaboratoryUSA

Personalised recommendations