Advertisement

Analysis of the Electronic Properties of Small Niobium Clusters

  • Tomas Wahnström
  • Arne Rosén
  • Tapio T. Rantala

Abstract

The electronic structures of small niobium clusters have been calculated within the local spin density approximation using the LCAO method. The calculations were done for optimized number of interaction bonds at the bond length in the bulk and a bond length assuming to be valid for the dimer. The changes in the Fermi energy is found to be more smooth as a function of cluster size compared with similar calculations for cobalt clusters. This may indicate that the change in reactivity for hydrogen chemisorption on niobium clusters as a function of cluster size is not a pure electronic structure effect but geometrical.

Keywords

Cluster Size Ionization Threshold Hydrogen Chemisorption Local Spin Density Approximation LUMO Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.
    R.P. Messmer in “The Physical Basis for Heterogeneous Catalysis”, Eds. E. Drauglis and R.I. Jaffee, Plenum, New York (1975).Google Scholar
  2. 3.
    T.N. Rhodin, G. Ertl, “The Nature of the Surface Chemical Bond”, North Hollan, Amsterdam (1979).Google Scholar
  3. 4.
    R.E. Smalley, in “Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules, the State of the Art”, Ed. R.J. Bartlett, D. Reidel Publ. Comp. Dordrecht, Holland (1985). In this review references are given to experimental works on clusters from a number of groups.Google Scholar
  4. 5.
    W. Weltner, Jr. and R.J. Van Zee, Ann. Rev. Phys. Chem. 35, 291 (1984). References are given to a number of calculations.ADSCrossRefGoogle Scholar
  5. 6.
    S.P. Walch and C.W. Bauschlicher, Jr., in “Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules, the State of the Art”, D. Reidel Publ. Comp. Dordrecht, Holland (1985).Google Scholar
  6. 7.
    B. Delley, D. Ellis, A. Freeman, E. Baerends and D. Post, Phys. Rev. B27, 2132 (1983).ADSGoogle Scholar
  7. 8.
    D.E. Ellis, B. Delley, in “Local Density Approximations in Quantum Chemistry and Solid State Physics”, Eds. J.P. Dahl and J. Avery, Plenum Publ. Corp. (1984).Google Scholar
  8. 9.
    B.K. Rao and P. Jena, J. Phys. F: Met. Phys. 16, 461 (1986).ADSCrossRefGoogle Scholar
  9. 10.
    J. Koutecky, G. Pacchioni, G.H. Jeung, E.C. Hass, Surf. Sci. 156, 650 (1984).CrossRefGoogle Scholar
  10. 11.
    J.L. Martins, J. Buttet, R. Car, Phys. Rev. B31, 1804 (1985).ADSGoogle Scholar
  11. 12.
    W.D. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, M.Y. Chou, and M.L. Cohen, Phys. Rev. Lett. 52, 2141 (1984).ADSCrossRefGoogle Scholar
  12. 13.
    R.L. Whetten, D.M. Cos, D.J. Trevor, A. Kaldor, Phys. Rev. Lett. 54, 1494 (1985)ADSCrossRefGoogle Scholar
  13. 13a.
    R.L. Whetten, D.M. Cos, D.J. Trevor, A. Kaldor, J. Phys. Chem. 89, 566 (1985).CrossRefGoogle Scholar
  14. 14.
    D.A. King, D.P. Woodruff, “The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. L. Clean Solid Surfaces, Vol. 2. Adsorption at Solid Surfaces, Vol. 3. Chemisorption Systems, Vol. 4. Fundamental Studies of Heterogeneous Catalysis”. Elsevier, Amsterdam (1983).Google Scholar
  15. 15.
    G.A. Somorjai, Science 227, 902 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    E. Shustorovich, R.C. Baetzold, Science 227, 876 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    E. Shustorovich, R.C. Baetzold, E.L. Muetterties, J. of Phys. Chem. 87, 1100 (1983).CrossRefGoogle Scholar
  18. 18.
    S.J. Riley, E.K. Parks, G.C. Nieman, L.G. Pobo, S. Wexler, J. Chem. Phys. 80, 1360 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    S.C. Richtsmeier, E.K. Parks, K. Lin, L.G. Pobo, S.J. Riley, J. Chem. Phys. 82, 3659 (1985).ADSCrossRefGoogle Scholar
  20. 20.
    E.K. Parks, K. Lin, S.C. Richtsmeier, L.G. Pobo, S.J. Riley, J. Chem. Phys. 82, 5470 (1985).ADSCrossRefGoogle Scholar
  21. 21.
    M.E. Geusic, M.D. Morse, R.E. Smalley, J. Chem. Phys. 82, 590 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    R.L. Whetten, D.M. Cox, D.J. Trevor, A. Kaldor, Phys. Rev. Lett. 54, 1494 (1985);ADSCrossRefGoogle Scholar
  23. 22a.
    R.L. Whetten, D.M. Cox, D.J. Trevor, A. Kaldor, J. Phys. Chem. 89, 566 (1985).CrossRefGoogle Scholar
  24. 23.
    K. Besocke and H. Wagner, Phys. Rev. B8, 4597 (1973);ADSGoogle Scholar
  25. 23a.
    K. Besocke and H. Wagner, Surf. Sci. 53, 351 (1975).ADSCrossRefGoogle Scholar
  26. 24.
    G.A. Samorjai, N.D. Spencer, and R.C. Schoonmaker, J. Catal. 74, 129 (1982).CrossRefGoogle Scholar
  27. 25.
    J.C. Philips, J. Chem. Phys. 84, 1951 (1986).ADSCrossRefGoogle Scholar
  28. 26.
    J.E. Scillard, R. Hoffmann, J. Am. Chem. Soc. 106, 2006 (1984). This work gives references to experimental and theoretical works on metallorganic compounds and surfaces.CrossRefGoogle Scholar
  29. 27.
    P. Nordlander, S. Holloway, J.K. Norskov, Surf. Sci. 136, 59 (1984). This work gives references to earlier studies of hydrogen chemisorp-tion on surfaces.ADSCrossRefGoogle Scholar
  30. 28.
    J.K. Norskov, A. Houmøller, P.K. Johanssen, and B.I. Lundqvist, Phys. Rev. Lett. 46, 257 (1981).ADSCrossRefGoogle Scholar
  31. 29.
    P. Madhavan and J.L. Whitten, J. Chem. Phys. 77, 2673 (1982).ADSCrossRefGoogle Scholar
  32. 30.
    P.E.M. Siegbahn, M.R.A. Blomberg, and C.W. Bauschlicher, J. Chem. Phys. 81, 1373 (1984).ADSCrossRefGoogle Scholar
  33. 31.
    J. Harris, S. Andersson, Phys. Rev. Lett. 55, 1583 (1985).ADSCrossRefGoogle Scholar
  34. 32.
    A. Rosen and T.T. Rantala, Z. Phys. (1986).Google Scholar
  35. 33.
    R.L. Whetten, M.R. Zakin, D.M. Cox, D.J. Trevor and A. Kaldor, J. Chem. Phys. 85, 1697 (1986).ADSCrossRefGoogle Scholar
  36. 34.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  37. 35.
    W. Kohn, L.J. Sham, Phys. Rev. A140, 1133 (1970).MathSciNetGoogle Scholar
  38. 36.
    U. von Barth, L. Hedin, J. Phys. C5, 1629 (1972).ADSGoogle Scholar
  39. 37.
    B. Delley, D.E. Ellis, J. Chem. Phys. 76, 1949 (1982).ADSCrossRefGoogle Scholar
  40. 38.
    A. Rosen, D.E. Ellis, H. Adachi and F.W. Averill, J. Chem. Phys. 65, 3629 (1976).ADSCrossRefGoogle Scholar
  41. 39.
    A. Rosen and T. Wahnström, this volume.Google Scholar
  42. 40.
    J.C. Slater, “Quantum Theory of Molecules and Solids”, Vol. 2, McGraw-Hill Book Comp., New York (1965).MATHGoogle Scholar
  43. 41.
    G. Blyholder, J. Phys. Chem. 68, 2772 (1964).CrossRefGoogle Scholar
  44. 42.
    E.W. Plummer, W. Eberhardt, Adv. Chem. Phys. 49, 533 (1982).CrossRefGoogle Scholar
  45. 43.
    Sung Shen-Shu and R. Hoffmann, J. Am. Chem. Soc. 107, 578 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Tomas Wahnström
    • 1
  • Arne Rosén
    • 1
  • Tapio T. Rantala
    • 2
  1. 1.Department of PhysicsChalmers University of Technology and University of GöteborgGöteborgSweden
  2. 2.Department of PhysicsUniversity of OuluOulu 57Finland

Personalised recommendations