Continuous Mass Selected Cluster Ion Production using a Liquid Metal Ion Source

  • S. D. Berry


A continuous source of mass-selected cluster ions is highly desirable for investigations requiring large numbers of clusters. An apparatus capable of producing a variable energy DC beam of mass-selected cluster ions and landing them on a solid substrate has been developed based on a liquid metal ion source. Clusters emitted from such a source into a cone of approximately eight degrees half-angle are focused by a multiple-element electrostatic lens into a nearly parallel beam and mass separated by a 60 degree magnetic sector to resolve individual cluster species. A second electrostatic lens/decelerator focuses the mass-resolved beam through a 0.125 inch diameter gridded aperture. The ion energy at this point is variable and can range from 0 to 2000 eV, and collection of clusters on a solid substrate is possible with landing energies ~20 eV or less. Characterization of the transport of clusters through the system is described. In addition, preliminary results have been obtained for collection of cluster ions on silicon surfaces.


Metal Cluster Deceleration Potential Electrostatic Lens Lens Element Deceleration Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. K. Wertheim, and S. B. DiCenzo, Comments Solid State Phys. (GB) v. 11, no. 5, p. 203–19 (1985).Google Scholar
  2. 2.
    L. A. Heimbrook, M. Rasenen, and V. E. Bondebey, Chem. Phys. Lett. 120 (3), 233–38 (1985); L. A. Heimbrook, M. Rasenen, and V. E. Bondebey, J. Phys. Chem., submitted for publication.ADSCrossRefGoogle Scholar
  3. 3.
    P. Dhez, P. Jaegle, S. Leach, and M. Velghe, J. Appl. Phys. 40, 2545 (1969);ADSCrossRefGoogle Scholar
  4. 3a.
    D. E. Powers, S. G. Hansen, M. E. Geusic, A. C. Puiu, J. B. Hopkins, T. G. Dietz, M. A. Duncan, P. R. R. Langridge-Smith, and R. E. Smalley, J. Phys. Chem. 86, 2556 (1982);CrossRefGoogle Scholar
  5. 3b.
    J. B. Hopkins, P. R. R. Langridge-Smith, M. D. Morse and R. E. Smalley, J. Chem. Phys. 78, 1627 (1983).ADSCrossRefGoogle Scholar
  6. 4.
    R. L. Seliger, J. W. Ward, V. Wang, and R. L. Kubena, Appl. Phys. Lett. 34, 310 (1979);ADSCrossRefGoogle Scholar
  7. 4a.
    W. L. Brown, T. Venkatesan, and A. Wagner, Solid State Technol. 24, 60 (1981).Google Scholar
  8. 5.
    A. R. Waugh, J. Phys. D 13, L203–8 (1980);ADSCrossRefGoogle Scholar
  9. 5a.
    S. P. Thompson and A. von Engel, J. Phys. D 15, 925–931 (1982);ADSCrossRefGoogle Scholar
  10. 5b.
    D. L. Barr, to appear in Proceedings of the 30th Intl. Symp. on Electron, Ion and Photon Beams, 1986.Google Scholar
  11. 6.
    R. Clampitt, K. L. Aitken, and D. K. Jeffries, J. Vac. Sci Technol. 12, 1208 (1975);ADSCrossRefGoogle Scholar
  12. 6a.
    G. L. R. Mair and A. von Engel, J. Appl. Phys. 50, 5592 (1979).ADSCrossRefGoogle Scholar
  13. 7.
    The reader is referred to any elementary text on electrostatic optics.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • S. D. Berry
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations