Periodic Anderson Model for Small Clusters

  • P. K. Misra
  • D. G. Kanhere
  • Joseph Callaway


The periodic Anderson model is applied to three different four-site clusters to study the f-site occupation (nf), specific heat (Cv) and magnetic susceptibility (xf) of rare-earth and actinide compounds. We consider one localized f orbital per site per spin with energy Ef with a Coulomb repulsion U between two electrons in ‘f’ orbitals in the same site, one extended orbital per site per spin with an interatomic transfer integral t and a positive hybridization term V between the localized and extended orbitals of same spin in different sites. The interaction between different sites is restricted to nearest neighbors and the number of electrons is taken to be one per site. The many-body eigenvalues and eigenstates are calculated exactly by diagonalizing the Hamiltonian. The principal features of our results for various choices of parameters are (i) observation of heavy-fermion behavior when the non-magnetic ground state is nearly degenerate with two excited magnetically ordered states; (ii) transition from a Kondo-lattice to a magnetic regime and subsequent re-entry to either a Kondo-lattice or a mixed-valence regime as Ef is increased; (iii) coexistence of magnetic order and mixed-valence for a narrow range-of Ef; (iv) the ‘benchmark’ results of Cy and Xf of single-impurity Anderson model are reproduced only at high temperatures.


Magnetic Ground State Valence Fluctuation Periodic Anderson Model Extended Orbital Impurity Anderson modelS 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Lawrence, P. S. Riseborough and R. D. Parks, Rep. Prog. Phys. 44, 1 (1981);ADSCrossRefGoogle Scholar
  2. 1a.
    Valence Fluctuations in Solids, eds. L. M. Falicov, W. Hanke and M. B. Maple, North-Holland, Amsterdam (1981);Google Scholar
  3. 1b.
    Valence Instabilities, eds. P. Wachter and H. Boppart, North-Holland, Amsterdam (1982).Google Scholar
  4. 2.
    G. R. Stewart’, Rev. Mod. Phys. 56, 755 (1984); J. Magn. Magn. Mater. 47–48 (1985); J. Magn. Magn. Mater. 54–57 (1986).ADSCrossRefGoogle Scholar
  5. 3.
    A brief review of these theories has been recently made by B. H. Brandow, Phys. Rev. B 33, 215 (1986).ADSCrossRefGoogle Scholar
  6. 4.
    P. W. Anderson, Phys. Rev. B 124, 41 (1961).ADSCrossRefGoogle Scholar
  7. 5.
    H. R. Krishnamurthy, J. W. Wilkins and K. G. Wilson, (a) Phys. Rev. B 21, 1003 (1980);ADSCrossRefGoogle Scholar
  8. 5A.
    H. R. Krishnamurthy, J. W. Wilkins and K. G. Wilson, (a) Phys. Rev. B (b) 21, 1044 (1980).ADSCrossRefGoogle Scholar
  9. 6.
    R. G. Arnold and K. W. H. Stevens, J. Phys. C 12, 5037 (1979).ADSCrossRefGoogle Scholar
  10. 7.
    J. C. Parlebas, R. H. Victoria and L. M. Falicov, J. Magn. Magn. Mater. 54–57, 405 (1986).Google Scholar
  11. 8.
    J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).ADSCrossRefGoogle Scholar
  12. 9.
    L. N. Oliveira and J. W. Wilkins, Phys. Rev. Lett. 47, 1553 (1981);ADSCrossRefGoogle Scholar
  13. 9a.
    V. T. Rajan, Phys. Rev. Lett. 51, 308 (1983).ADSCrossRefGoogle Scholar
  14. 10.
    K. Satoh, T. Fukita, Y. Maeno, Y. Onuki, T. Komatsubara and T. Onuki, Solid State Commun. 56, 327 (1985).ADSCrossRefGoogle Scholar
  15. 11.
    G. Aeppli, H. Yoshisawa, Y. Endoh, E. Bucher, J. Hufnagl, Y. Onuki and T. Komatsubara, Phys. Rev. Lett. 57, 122 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • P. K. Misra
    • 1
  • D. G. Kanhere
    • 2
  • Joseph Callaway
    • 3
  1. 1.Dept. of PhysicsUniv. of Rhode IslandKingstonUSA
  2. 2.Dept. of PhysicsUniv. of PoonaPuneIndia
  3. 3.Dept. of PhysicsLouisiana St. Univ.Baton RougeUSA

Personalised recommendations