Advertisement

Self-Consistent Calculation of the Collective Excitations of Small Jellium Spheres

  • D. E. Beck

Abstract

The time-dependent local density approximation is used to compute the complex eigenfrequencies for the dipolar excitations of small jellium spheres. The dynamic response of the sphere to a time-dependent field is continued to complex frequencies in order to isolate the contributions of the individual eigenmodes of the system. The computations are reported for closed-shell configurations containing from 8 to 198 electrons.

Keywords

Fano Resonance Collective Excitation Plasma Mode Jellium Model Positive Charge Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.J. Stott and E. Zaramba, Phys. Rev. A 21 12 (1980);ADSCrossRefGoogle Scholar
  2. 1a.
    A. Zangwill and Paul Soven, Phys. Rev. A 21, 1561 (1980).ADSCrossRefGoogle Scholar
  3. 2.
    D.E. Beck, Phys. Rev. B 30, 6935 (1984).ADSCrossRefGoogle Scholar
  4. 3.
    W. Ekardt, Phys. Rev. Lett. 52, 1925 (1984)ADSCrossRefGoogle Scholar
  5. 3a.
    W. Ekardt, Phys. Rev. B31, 6360 (1985).ADSGoogle Scholar
  6. 4.
    O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976).ADSCrossRefGoogle Scholar
  7. 5.
    A. Zangwill in “Atomic Physics 8”, Eds. I. Lindgren, A. Rosen and S. Svanberg (Plenum Publishing Corp., 1983), pg. 339.CrossRefGoogle Scholar
  8. 6.
    W.D. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, M.Y. Chou and M.L. Cohen, Phys. Rev. Lett. 52, 2141 (1984)ADSCrossRefGoogle Scholar
  9. 6a.
    W.D. Knight, W.A. de Heer, K. Clemenger and W.A. Saunders, Solid State Commun. 53, 445 (1985)ADSCrossRefGoogle Scholar
  10. 6b.
    M.Y. Chou, A. Cleland and M.L. Cohen, Solid State Commun. 52, 645 (1984).ADSCrossRefGoogle Scholar
  11. 7.
    M. Manninen, R.M. Nieminen and M.J. Puska, Phys. Rev. B 33, 4289 (1986).ADSCrossRefGoogle Scholar
  12. 8.
    W.D. Knight, K. Clemenger, W.A. de Heer, and W.A. Saunders, Phys. Rev. B 31, 2539 (1985).ADSCrossRefGoogle Scholar
  13. 9.
    D.E. Beck, Solid State Commun. 49, 381 (1984)ADSCrossRefGoogle Scholar
  14. 9a.
    W. Ekardt, Phys. Rev. B 29, 1558 (1984).ADSCrossRefGoogle Scholar
  15. 10.
    W. Ekardt, Phys. Rev. B 32, 1961 (1985).ADSCrossRefGoogle Scholar
  16. 11.
    Zangwill and Soven in their atomic calculations (Ref. 1) found that their thresholds typically began several volts below the observed thresholds.Google Scholar
  17. 12.
    Details of this continuation as well as a more comprehensive report of this calculation will be published elsewhere.Google Scholar
  18. 13.
    R. Ruppin, Phys. Rev. B 11, 2871 (1975)ADSCrossRefGoogle Scholar
  19. 13a.
    B.B. Dasgupta and R. Fuchs, Phys. Rev. B 24, 554 (1981).ADSCrossRefGoogle Scholar
  20. 14.
    C.J. Duthler, S.E. Johnson and H.P. Broida, Phys. Rev. Lett. 26, 1236 (1971); a recent review of optical absorption of small metal particles [U. Kreibig and L. Genzel, Surface Sci. 156, 678 (1985)] presents the experimental and theoretical results for their plasma modes.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • D. E. Beck
    • 1
  1. 1.Department of Physics and Laboratory for Surface StudiesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations