Advertisement

Stability of Small Metallic Clusters : Conceptual and Computational Challenges

  • Jean-Paul Malrieu

Abstract

The flatness of the potential energy surfaces, the possible existence of several local minima, of different spin and space symmetries make especially difficult the theoretical study of atomic clusters. One recalls the Valence-Bond distinction between neutral and ionic states and the various components of binding energies — delocalisation and charge and spin correlation within the valence band — hybridization, dispersion and dynamical correlation effects going out of the valence band. The extent and qualitative effects of these various components is first illustrated on filled bands and nearly filled band problems (neutral and positively charged clusters of alkaline earth and rare gas atoms) and on half-filled band situations (alkali and transition metal clusters). The presently proposed lithium cluster conformations correspond to ionic states, but possible neutral structures with ordered spin waves should be searched. The intra-atomic ferromagnetism of the transition metals introduces a constraint neglected by ab initio RHF approaches and taken into account in unrestricted HF and LSD formalisms.

Keywords

Spin Wave Self Consistent Field Pentagonal Bipyramid Instantaneous Polarization Transition Metal Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Koutecky and P. Fantucci, Chem. Rev. 86, 539 (1986).CrossRefGoogle Scholar
  2. 2.
    T. Hubbard, Proc. Roy. Soc. London, Ser. A. 276, 283 (1986).Google Scholar
  3. 3.
    P.W. Anderson, Phys. Rev. 115, 2 (1959) ; in Magnetism, edited by C.T. Rado and H. Juhl (Academic, New York, 1963) p. 25.MathSciNetADSCrossRefMATHGoogle Scholar
  4. 4.
    P. Karafiloglou and J.P. Malrieu, Chem. Phys. 104, 383 (1986).CrossRefGoogle Scholar
  5. 5.
    M.M. Goodgame and W.A. Goddard III, Phys. Rev. Letters 54, 661 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    F. Spiegelmann, J.P. Malrieu, D. Maynau and J.P. Zurru, J. Chim. Phys. 83, 69 (1986).Google Scholar
  7. 7.
    J.P. Daudey, O. Novaro and M. Berrondo, J. Chem. Phys. 71, 4297 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    B. Liu and A.D. McLean, J. Chem. Phys. 72, 3418 (1980)ADSCrossRefGoogle Scholar
  9. 8a.
    R.J. Harrison and N.C. Handy, Chem. Phys. Letters 98, 97 (1983)ADSCrossRefGoogle Scholar
  10. 8b.
    B.H. Lengsfield, A.D. McLean, M. Yoshimire and B. Liu, J. Chem. Phys. 79, 1891 (1983).ADSCrossRefGoogle Scholar
  11. 9.
    V.E. Bondybey and J.H. English, J. Chem. Phys. 80, 568 (1984).ADSCrossRefGoogle Scholar
  12. 10.
    J. Gerratt, in ref. 11.Google Scholar
  13. 11.
    R.J. Harrison and N.C. Handy, Chem. Phys. Letters 123, 321 (1986).ADSCrossRefGoogle Scholar
  14. 12.
    G. Pacchioni and J. Koutecky, Chem. Phys. 71, 181 (1982)CrossRefGoogle Scholar
  15. 12a.
    G. Pacchioni and J. Koutecky, J. Chem. Phys. 77, 5850 (1982).ADSCrossRefGoogle Scholar
  16. 13.
    C.W. Bauschlicher, P.S. Bagus, B.N. Cox, J. Chem. Phys. 77, 4032 (1982).ADSCrossRefGoogle Scholar
  17. 14.
    C.W. Bauschlicher and L.G.M. Petterson, J. Chem. Phys. 84, 2226 (1986).ADSCrossRefGoogle Scholar
  18. 15.
    W.C. Ermler, C.W. Kern, R.M. Pitzer, N.W. Winter, J. Chem. Phys. 84, 3937 (1986).ADSCrossRefGoogle Scholar
  19. 16.
    G. Durand, J.P. Daudey, J.P. Malrieu, J. de Phys. 47, 1335 (1986).CrossRefGoogle Scholar
  20. 17.
    G. Durand, J.P. Daudey, J.P. Malrieu, to be published.Google Scholar
  21. 18.
    W.R. Wadt, Appl. Phys. Letters 38, 1030 (1981). This work also includes DIM calculations ; H.U. Böhmer, S.D. Peyerimhoff, in press.ADSCrossRefGoogle Scholar
  22. 19.
    J. Hesslich, P.J. Kuntz, Z. Phys. D 2 251 (1986).ADSCrossRefGoogle Scholar
  23. 20.
    C. Brechignac, M. Broyer, Ph. Cahuzac, G. Delacretaz, P. Labastie and L. Woste, Chem. Phys. Letters 118, 174 (1985).ADSCrossRefGoogle Scholar
  24. 21.
    G. Durand, to be published.Google Scholar
  25. 22.
    J. Kendrick and I.H. Hillier, Mol. Phys. 33, 635 (1977) ;ADSCrossRefGoogle Scholar
  26. 22a .
    J.W. Kress, J.J. Carberry and G.C. Kuczinski, Mol. Phys. 36, 717 (1978)ADSCrossRefGoogle Scholar
  27. 22b.
    J.L. Gole, R.H. Childs, D.A. Dixon and R.A. Eades, J. Chem. Phys. 72, 6368 (1980).ADSCrossRefGoogle Scholar
  28. 23.
    D. Maynau, private communication.Google Scholar
  29. 24.
    J.P. Malrieu, D. Maynau, J.P. Daudey, Phys. Rev. B 30, 1817 (1984).ADSCrossRefGoogle Scholar
  30. 25.
    A.L. Companion, Chem. Phys. Letters 56., 500 (1978)ADSCrossRefGoogle Scholar
  31. 25a.
    S.C. Richtsmeier, D.A. Dixon, J.L. Gole, J. Chem. Phys. 86, 3942 (1982).CrossRefGoogle Scholar
  32. 26.
    H.O. Beckmann, J. Koutecky, V. Bonacic-Koutecky, J. Chem. Phys. 73 119 (1979)Google Scholar
  33. 26a.
    G. Pacchioni, H.O. Beckmann, J. Koutecky, Chem. Phys. Letters 87, 151 (1982).ADSCrossRefGoogle Scholar
  34. 27.
    B.K. Rao, P. Jena, Phys. Rev. B 32, 2058 (1985).ADSCrossRefGoogle Scholar
  35. 28.
    A.K. Ray, J.L. Fry, C.W. Myles, J. Phys. B 18, 381 (1985).ADSCrossRefGoogle Scholar
  36. 29.
    J.G. Fripiat, K.T. Chow, M. Boudart, J.B. Diamond, K.H. Johnson, J. Mol. Catal. 1, 59 (1975).CrossRefGoogle Scholar
  37. 30.
    J.P. Malrieu, D. Maynau, J. Am. Chem. Soc. 104, 3021 (1982)CrossRefGoogle Scholar
  38. 30a.
    D. Maynau, J.P. Malrieu, J. Am. Chem. Soc. 104, 3029 (1982)CrossRefGoogle Scholar
  39. 30b.
    D. Maynau, Ph. Durand, J.P. Daudey, J.P. Malrieu, Phys. Rev. A 28, 3193 (1983).ADSCrossRefGoogle Scholar
  40. 31.
    P. Fantucci, J. Pacchioni, J. Koutecky, J. Chem. Phys. 80, 325 (1984) ;ADSCrossRefGoogle Scholar
  41. 31a.
    G. Pacchioni, J. Koutecky, Ber. Bunsenges Phys. Chem. 88, 242 (1984).CrossRefGoogle Scholar
  42. 32.
    P. Fantucci, V. Bonacic-Koutecky, J. Koutecky, J. Phys. Chem. 87, 1096 (1983),CrossRefGoogle Scholar
  43. 32a.
    P. Fantucci, V. Bonacic-Koutecky, J. Koutecky, J. Comput. Chem., 6, 462 (1985).CrossRefGoogle Scholar
  44. 33.
    R.F. Marshall, R.J. Blint, A.B. Kunz, Phys. Rev. B 13, 333 (1976)ADSCrossRefGoogle Scholar
  45. 33a.
    R.F. Marshall, R.J. Blint, A.B. Kunz,Solid State Commun. 18, 371 (1976).CrossRefGoogle Scholar
  46. 34.
    D. Maynau, J.P. Daudey, J.P. Malrieu, to be published.Google Scholar
  47. 35.
    G. Trinquier, J.P. Daudey, N. Komiha, J. Am. Chem. Soc. 107, 7210 (1985).CrossRefGoogle Scholar
  48. 36.
    G. Trinquier, private communication.Google Scholar
  49. 37.
    A.D. McLean, B. Liu, Chem. Phys. Letters 101, 144 (1983).ADSCrossRefGoogle Scholar
  50. 38.
    M.M. Goodgame, W.A. Goddard, Phys. Rev. Letters 48, 135 (1982).ADSCrossRefGoogle Scholar
  51. 39.
    Y.M. Efrenov, A.N. Samoilova, V.B. Kozhukosky, L.V. Gurvich, J. Mol. Spectrosc. 73, 430 (1978)ADSCrossRefGoogle Scholar
  52. 39a.
    V.E. Bondibey, J.H. English, Chem. Phys. Letters 94, 443 (1983).ADSCrossRefGoogle Scholar
  53. 40.
    A. Kant, B.H. Strauss, J. Chem. Phys. 45, 3161 (1966).ADSCrossRefGoogle Scholar
  54. 41.
    M. Pelissier, J.P. Daudey, private communication.Google Scholar
  55. 42.
    B. Delley, A.J. Freeman and D.E. Ellis, Phys. Rev. Letters 50, 488 (1983).ADSCrossRefGoogle Scholar
  56. 43.
    K. Lee, J. Callaway, K. Kwong, R. Tang, A. Ziegler, Phys. Rev. B 31, 1796 (1985).ADSCrossRefGoogle Scholar
  57. 44.
    M.H. McAdon, W.A. Goddard, Phys. Rev. Letters 55, 2563 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jean-Paul Malrieu
    • 1
  1. 1.Laboratoire de Physique Quantique (U.A. 505 du C.N.R.S.)Université Paul SabatierToulouse CedexFrance

Personalised recommendations