Structure of Homo- and Hetero-Nuclear Micro-Clusters

  • B. K. Rao
  • S. N. Khanna
  • P. Jena


Using ab initio SCF-LCAO-MO theory, studies have been made on small clusters of lithium, beryllium, magnesium, and carbon atoms. These studies include the investigation of the equilibrium geometries, relative stabilities, and the evolution of various structural and electronic properties. The study of the electronic properties shows that the geometries of the clusters have a direct relationship with their spin configurations. The effects of foreign atoms on the properties of clusters have been investigated using clusters of LiNNa, LiNMg, and LiNAl. The effect of ionization on cluster stability and the dissociation channels of multiply ionized clusters are also discussed.


Valence Electron Magic Number Equilibrium Geometry Lithium Atom Apex Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. W. Becker, K. Bier, and W. Henkes, Z. Phys. 146, 333 (1956).ADSCrossRefGoogle Scholar
  2. 2.
    T. D. Mark and A. W. Castleman, Jr., Adv. At. and Mol. Phys. 20 65 (1985). Also see the references therein.ADSCrossRefGoogle Scholar
  3. 3.
    I. A. Harris, R. S. Kidwell, and J. A. Northby, Phys. Rev. Lett. 53, 2390 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    O. Echt, K. Sattler, and E. Recknagel, Phys. Rev. Lett. 47, 1121 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    J. Farges, M. F. DeFeraudy, B. Raoult, and P. Torchet, J. Chem. Phys. 78, 5067 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    K. Kimoto, I. Nishida, H. Takahishi, and H. Kato, Jpn. J. Appl. Phys. 19, 1821 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    M. M. Kappes, R. W. Kunz, and E. Schumacher, Chem. Phys. Lett. 91, 413 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    W. D. Knight, K. Clemenger, W. A. deHeer, W. A. Saunders, M. Y. Chou, and M. L. Cohen, Phys. Rev. Lett. 52, 2141 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    F. W. Froben and W. Schulze, Ber. Bunsenges, Phys. Chem. 88, 312 (1984).CrossRefGoogle Scholar
  10. 10.
    L. A. Bloomfield, R. R. Freeman, and W. L. Brown, Phys. Rev. Lett. 54, 2246 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    A Kasuya and Y. Nishina, Phys. Rev. Lett. 57, 755 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    E. A. Rohlfing, D. M. Cox, and A. Kaldor, J. Chem. Phys. 81, 3322 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    M. M. Kappes, P. Radi, M. Schar, and E. Schumacher, Chem. Phys. Lett. 119, 11 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    T. P. Martin, J. Chem. Phys. 81, 4426 (1984).ADSCrossRefGoogle Scholar
  15. 15.
    M. D. Morse, M. E. Geusic, J. R. Heath, and R. E. Smalley, J. Chem. Phys. 83, 2293 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    S. C. Richtsmeier, E. K. Parks, K. Liu, L. G. Pobo, and S. J. Riley, J. Chem. Phys. 82, 3659 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    R. L. Whetten, D. M. Cox, D. J. Trevor, and A. Kaldor, Phys. Rev. Lett. 54, 1494 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    B. K. Rao and P. Jena, Phys. Rev. B. 32 2058 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    J. L. Martins, J. Buttet, and R. Car, Phys. Rev. B 31 1804 (1985).ADSCrossRefGoogle Scholar
  20. 20.
    J. Koutecky and P. Fantucci, Chem. Rev. 86, 539 (1984). See references therein.CrossRefGoogle Scholar
  21. 21.
    B. K. Rao, S. N. Khanna, and P. Jena, Chem. Phys. Lett. 121, 202 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    D. E. Ellis, Int. J. Quant. Chem. 18, 183 (1984)CrossRefGoogle Scholar
  23. 22a.
    B. Delley, D. E. Ellis, A. J. Freeman, E. J. Baerends, and D. Post, Phys. Rev. 27, 2132 (1983).ADSCrossRefGoogle Scholar
  24. 23.
    P. S. Bagus, C. J. Nelin, and C. W. Bauschlicher, Jr., Suf. Sci. 156, 615 (1985)ADSCrossRefGoogle Scholar
  25. 23a.
    C. W. Bauschlicher, Jr., Chem. Phys. Lett. 117, 33 (1985).ADSCrossRefGoogle Scholar
  26. 24.
    D. R. Salahub in “Proceedings of NATO Advanced Study Institute on Impact of Cluster Physics in Materials Science and Technology”, Ed. J. Davenas (Plenum, N.Y., in press).Google Scholar
  27. 25.
    K. H. Johnson, “Local Density Approximations in Quantum Chemistry and Solid State Physics”, Eds. J. P. Dahl and J. Averry (Plenum, N.Y., 1984).Google Scholar
  28. 26.
    W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, “Ab Initio Molecular Orbital Theory”, (John Wiley, N.Y., 1986).Google Scholar
  29. 27.
    C. Möller and M. S. Plesset, Phys. Rev. 46, 618 (1934)ADSCrossRefMATHGoogle Scholar
  30. 27a.
    J. S. Binkley. and J. A. Pople, Int. J. Quant. Chem. 9 229 (1975).CrossRefGoogle Scholar
  31. 28.
    A Szabo and N. S. Ostlund, “Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory”, (MacMillan, N.Y., 1982).Google Scholar
  32. 29.
    B. K. Rao, P. Jena, and M. Manninen, Phys. Rev. B.32, 477 (1985).ADSCrossRefGoogle Scholar
  33. 30.
    B. K. Rao, S. N. Khanna, and P. Jena, Solid State Commun. 56, 731 (1985).ADSCrossRefGoogle Scholar
  34. 31.
    T. H. Upton, Phys. Rev. Lett. 56, 2168 (1986).ADSCrossRefGoogle Scholar
  35. 32.
    K. Raghavachari and V. Logovinski, Phys. Rev. Lett. 55, 2852 (1985).ADSCrossRefGoogle Scholar
  36. 33.
    B. K. Rao, S. N. Khanna, and P. Jena, Z. Phys. D 3, 219 (1986).ADSCrossRefGoogle Scholar
  37. 34.
    P. Jena, B. K. Rao, and R. M. Nieminen, Solid St. Commun. 59, 509 (1986).ADSCrossRefGoogle Scholar
  38. 35.
    B. K. Rao, P. Jena, M. Manninen, and R. M. Nieminen (to be published).Google Scholar
  39. 36.
    M. R. Press, B. K. Rao, S. N. Khanna, and P. Jena; see page 431 in this book.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • B. K. Rao
    • 1
  • S. N. Khanna
    • 1
  • P. Jena
    • 1
  1. 1.Virginia Commonwealth UniversityRichmondUSA

Personalised recommendations