Advertisement

ESR of Small Clusters

  • William WeltnerJr.
  • Richard J. Van Zee

Abstract

It is not straightforward to determine the detailed electronic and magnetic properties of individual clusters. Optical spectroscopy has been applied successfully to conventional1 and supersonic sources, but particularly for clusters larger than diatomics, the complexity of the spectra may make the analysis very difficult. Electron-spin-resonance (ESR) spectroscopy at 4 K offers a means of determining a number of important properties of small clusters, such as:
  1. 1.

    Multiplicity; i.e., total spin S.

     
  2. 2.

    Spin populations and s, p, and/or d character. This is obtained from the hyperfine splittings (hfs) due to the interaction of the unpaired electrons with the nuclear moments.

     
  3. 3.

    Geometry of the molecule (linear, equilateral triangle, number of equivalent nuclei, etc.). This may also be obtained from hfs.

     
  4. 4.

    Zero-field splitting, D (and E). Arises from magnetic interaction between unpaired spins (spin-spin interaction) or through second-order spin orbit interaction, when S > 1.

     
  5. 5.

    g tensor components. Shifts from the free electron value, ge = 2.0023, indicate the degree of spin-orbit coupling with excited electronic states and can indicate the presence of low-lying states.

     
  6. 6.

    Spin-rotation constants. Derived from g shifts using Curl’s equation.4

     
  7. 7.

    Electric quadrupole coupling constants. Arise from interaction of the electric field gradient with a nucleus having a quadrupole moment.

     

Keywords

Hyperfine Splitting Apical Angle Hydrocarbon Matrice Unpaired Spin Distorted Trigonal Bipyramid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. M. Efremov, A. N. Samoilova, V. B. Kozhubhovsky and L. V. Gurvich, J. Mol. Spectr. 73:430 (1978).ADSCrossRefGoogle Scholar
  2. 2.
    D. L. Michalopoulos, M. E. Geusic, S. G. Hansen, D. E. Powers, R. E. Smalley, J. Phys. Chem. 86:3914 (1982),CrossRefGoogle Scholar
  3. 2a.
    V. E. Bondybey, and J. H. English, Chem. Phys. Let. 94:443 (1983)ADSCrossRefGoogle Scholar
  4. 2b.
    P. R. R. Langridge-Smith, M. D. Morse, G. P. Hansen, R. E. Smalley, A. J. Merer, J. Chem. Phys. 80:593 (1984).ADSCrossRefGoogle Scholar
  5. 3.
    Even for cold Cu3 the analysis is difficult: M. D. Morse, J. B. Hopkins, P. R. R. Langridge-Smith, R. E. Smalley, J. Chem. Phys. 79:5316 (1983)ADSCrossRefGoogle Scholar
  6. 3a.
    T. C. Thompson, D. G. Truhlar, and C. A. Mead, J_. Chem. Phys. 82:2392 (1985)ADSCrossRefGoogle Scholar
  7. 3b.
    E. A. Rohlfing, and J. J. Valentini, Chem. Phys. Lett. 126:113 (1986)ADSCrossRefGoogle Scholar
  8. 3c.
    E. A. Rohlfing, and J. J. Valentini, J. Chem. Phys. 84:6560 (1986).ADSCrossRefGoogle Scholar
  9. 4.
    R. F. Curl, Mol. Phys. 9:585 (1965).ADSCrossRefGoogle Scholar
  10. 5.
    H. E. Radford, Phys. Rev. 122:114 (1961)ADSCrossRefGoogle Scholar
  11. 5a.
    H. E. Radford, Phys. Rev. 136A:15 (1964)Google Scholar
  12. 5b.
    H. E. Radford, J. Chem. Phys. 40:2732 (1964)ADSCrossRefGoogle Scholar
  13. 5c.
    A. Carrington, D. H. Levy, and T. A. Miller, Adv. Chem. Phys. 18:149 (1970).CrossRefGoogle Scholar
  14. 6.
    D. M. Lindsay, D. R. Herschbach, and A. L. Kwiram, Mol. Phys. 32:1199 (1976)ADSCrossRefGoogle Scholar
  15. 6a.
    D. M. Lindsay, D. R. Herschbach, and A. L. Kwiram, Mol. Phys. 39:529 (1980).ADSCrossRefGoogle Scholar
  16. 7.
    D. M. Lindsay and G. A. Thompson, J. Chem. Phys. 77:1114 (1982).ADSCrossRefGoogle Scholar
  17. 8.
    G. A. Thompson and D. M. Lindsay, J. Chem. Phys. 74:959 (1981).ADSCrossRefGoogle Scholar
  18. 9.
    G. A. Thompson, F. Tischler, D. Garland, and D. M. Lindsay, Surf. Sci. 106:408 (1981).ADSCrossRefGoogle Scholar
  19. 10.
    D. M. Lindsay, D. Garland, F. Tischler, and G. A. Thompson, Am. Chem. Soc. Symp. Ser. (J. L. Gole and W. C. Stwalley, Editors) No. 179, 69 (1982).Google Scholar
  20. 11.
    R. L. Martin and E. R. Davidson, Mol. Phys. 35:1713 (1978).ADSCrossRefGoogle Scholar
  21. 12.
    T. C. Thompson, G. Izmirlian, Jr., S. J. Lemon, D. G. Truhlar, and C. A. Mead, J. Chem. Phys. 82:5597 (1985).ADSCrossRefGoogle Scholar
  22. 13.
    P. H. Kasai and D. McLeod, Jr., J. Chem. Phys. 55:1566 (1971).ADSCrossRefGoogle Scholar
  23. 14.
    D. A. Garland and D. M. Lindsay, J. Chem. Phys. 78:2813 (1983).ADSCrossRefGoogle Scholar
  24. 15.
    J. A. Howard, R. Sutcliffe, and B. Mile, Chem. Phys. Lett. 112:84 (1984).ADSCrossRefGoogle Scholar
  25. 16.
    J. Kendrick and J. H. Hillier, Mol. Phys. 33:635 (1977)ADSCrossRefGoogle Scholar
  26. 16a.
    P. S. Bagus, G. del Conde, and D. W. Davies, J. Chem. Soc. Faraday Trans. II, 62:321 (1977)Google Scholar
  27. 17.
    W. H. Gerber and E. Schumacher, J. Chem. Phys. 69:1692 (1978)ADSCrossRefGoogle Scholar
  28. 17a.
    E. Schumacher, W. H. Gerber, H. P. Harri, M. Hoffmann, and E. Scholl, Am. Chem. Soc. Symp. Series 179:83 (1982).CrossRefGoogle Scholar
  29. 18.
    D. A. Garland and D. M. Lindsay, J. Chem. Phys. 80:4761 (1984).ADSCrossRefGoogle Scholar
  30. 19.
    G. A. Thompson, F. Tischler, and D. M. Lindsay, J. Chem. Phys. 78:5946 (1983).ADSCrossRefGoogle Scholar
  31. 20.
    P. Fantucci, J. Koutecky, and G. Pacchioni, J. Chem. Phys. 80:325 (1984).ADSCrossRefGoogle Scholar
  32. 21.
    J. J. Burton, Catal. Rev. 9:209 (1974).CrossRefGoogle Scholar
  33. 22.
    J. A. Howard, R. Sutcliffe, and B. Mile, Surf. Sci. 156:214 (1985).ADSCrossRefGoogle Scholar
  34. 23.
    See, for example, Ag atom reactions with hydrocarbons: P. H. Kasai and D. McLeod, Jr., J. Am. Chem. Soc. 97:6602 (1975)CrossRefGoogle Scholar
  35. 23a.
    See, for example, Ag atom reactions with hydrocarbons: P. H. Kasai and D. McLeod, Jr., J. Am. Chem. Soc. 100:625 (1978)CrossRefGoogle Scholar
  36. 23b.
    P. H. Kasai, D. McLeod, Jr. and T. Watanabe, J. Am. Chem. Soc. 102:179 (1980).CrossRefGoogle Scholar
  37. 24.
    J. A. Howard, K. F. Preston, and R. Sutcliffe, J. Phys. Chem. 87:536 (1983).CrossRefGoogle Scholar
  38. 25.
    J. A. Howard, K. F. Preston, and B. Mile, J. Am. Chem. Soc. 103:6226 (1981).CrossRefGoogle Scholar
  39. 26.
    J. A. Howard, R. Sutcliffe, and B. Mile, J. Chem. Soc., Chem. Comm. 1449 (1983).Google Scholar
  40. 27.
    J. A. Howard, R. Sutcliffe, and B. Mile, J. Am. Chem. Soc. 105:1394 (1983).CrossRefGoogle Scholar
  41. 28.
    In recent work in our laboratory the ESR spectrum of Ag3 in a neon matrix has been observed.Google Scholar
  42. 29.
    D. M. Lindsay, G. A. Thompson, and Y. Wang (to be published).Google Scholar
  43. 30.
    K. Kernisant, G. A. Thompson, and D. M. Lindsay, J. Chem. Phys. 82:4739 (1985).ADSCrossRefGoogle Scholar
  44. 31.
    T. C. Thompson, D. G. Truhlar, and C. A. Mead, J. Chem. Phys. 82:2392 (1985).ADSCrossRefGoogle Scholar
  45. 32.
    Matrix effects associated with low bending force constants have been observed in the ESR spectra of the SiCO molecule [Lembke, Ferrante, and Weltner, J. Am. Chem. Soc. 99:416 (1977)] and the VCO molecule [Van Zee, Bach, and Weltner, J. Phys. Chem. 90:583 (1986)] and references cited there. See the section in this review on ESR in Matrices.Google Scholar
  46. 33.
    J. A. Howard, R. Sutcliffe, J. S. Tse, and B. Mile, Chem. Phys. Lett. 94:561 (1983).ADSCrossRefGoogle Scholar
  47. 34.
    J. A. Howard, R. Sutcliffe, and B. Mile, J. Phys. Chem. 87:2268 (1983).CrossRefGoogle Scholar
  48. 35.
    J. A. Howard, R. Sutcliffe and B. Mile, J. Phys. Chem. 88:2183 (1984).CrossRefGoogle Scholar
  49. 36.
    Tentative parameters for 107Ag7 in a neon matrix are: g = 2.094, |A1| = 204 G, |A|5 = 7.4 G, as compared to g = 2.685, |A|2 = 20I G, |A|5 – 5.5 G in the C6D12 matrix spectrum .Google Scholar
  50. 37.
    W. Weltner, Jr. and R. J. Van Zee, Ann. Rev. Phys. Chem. 35:291(1984).ADSCrossRefGoogle Scholar
  51. 38.
    W. Weltner, Jr. and R. J. Van Zee in “Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules”, R. J. Bartlett, Ed., Reidel, Dordrecht (1985) pages 1–16.CrossRefGoogle Scholar
  52. 39.
    Y. M. Efremov, A. N. Samoilova, V. B. Kozhubhovsky, L. V. Gurvich, J.. Mol. Spectr. 73:430 (1978)ADSCrossRefGoogle Scholar
  53. 39a.
    D. L. Michalopoulos, M. E. Geusic, S. G. Hansen, D. E. Powers, R. E. Smalley, J. Phys. Chem. 86:3914 (1982)CrossRefGoogle Scholar
  54. 39b.
    S. J. Riley, E. K. Parks, L. G. Pobo, S. Wexler, J. Chem. Phys. 79:2577 (1983)ADSCrossRefGoogle Scholar
  55. 39c.
    V. E. Bondybey and J. H. English, Chem. Phys. Lett. 94:443 (1983).ADSCrossRefGoogle Scholar
  56. 40.
    L. B. Knight, Jr., R. W. Woodward, R. J. Van Zee, W. Weltner, Jr., J. Chem. Phys. 79:5820 (1983).ADSCrossRefGoogle Scholar
  57. 41.
    S. P. Walch and C. W. Bauschlicher, Jr., J. Chem. Phys. 83:5735(1985).ADSCrossRefGoogle Scholar
  58. 42.
    C. A. Baumann, R. J. Van Zee, S. V. Bhat, and W. Weltner, Jr., J. Chem. Phys. 78:190 (1983).ADSCrossRefGoogle Scholar
  59. 43.
    J. Frenkel and J. Dorfman, Nature (London) 126:274 (1930)ADSCrossRefMATHGoogle Scholar
  60. 43a.
    E. C. Stoner, Phil. Trans. Roy. Soc. London Ser. A 235:165 (1936)ADSCrossRefGoogle Scholar
  61. 43b.
    J. J. Becker, Trans. AIME 209:59 (1957)Google Scholar
  62. 43c.
    C. P. Bean and J. D. Livingston, J. Appl. Phys. 30:1265 (1959).CrossRefGoogle Scholar
  63. 44.
    D. R. Salahub, “Impact of Cluster Physics in Material Science and Technology”, J. Davenas, Ed., The Hague, Nijhoff, (1983).Google Scholar
  64. 45.
    E. A. Ballik and D. A. Ramsay, J. Chem. Phys. 31:1128 (1959).ADSCrossRefGoogle Scholar
  65. 46.
    L. Gausset, G. Herzberg, A. Lagerqvist and B. Rosen, Discuss. Faraday Soc. 35:113 (1963).CrossRefGoogle Scholar
  66. 47.
    W. R. M. Graham, K. I. Dismuke, and W. Weltner, Jr., As trophys. J. 204:301–10 (1976).ADSCrossRefGoogle Scholar
  67. 48.
    K. R. Thompson, R. L. DeKock, and W. Weltner, Jr., J. Am. Chem. Soc. 93:4688 (1971).CrossRefGoogle Scholar
  68. 49.
    K. S. Pitzer and E. Clementi, J. Am. Chem. Soc. 81:4477 (1959)CrossRefGoogle Scholar
  69. 49a.
    E. Clementi, J.. Am. Chem. Soc. 83:4501 (1961)CrossRefGoogle Scholar
  70. 49b.
    S. J. Strickler and K. S. Pitzer, “Molecular Orbitals in Chemistry, Physics and Biology”, B. Pullman and P.-O. Löwdin, Eds., Academic, NY (1964)Google Scholar
  71. 49c.
    R. Hoffman, Tetrahedron 22:521 (1966).CrossRefGoogle Scholar
  72. 50.
    Z. Slanina and R. Zahradnik, J. Phys. Chem. 81:2252 (1977).CrossRefGoogle Scholar
  73. 51.
    R. A. Whiteside, R. Krishnan, D. J. DeFrees, and J. A. Pople, Chem. Phys. Lett. 78:538 (1981).ADSCrossRefGoogle Scholar
  74. 52.
    Z. Z. Wang, R. N. Diffenderfer, and I. Shavitt (to be published).Google Scholar
  75. 53.
    J. P. Ritchie, H. F. King, and W. S. Young, Proc. NATO/ASI in “Fast Reaction Kinetics”, Aug. 25 to Sept. 7, (1985), Crete, Greece.Google Scholar
  76. 54.
    J. Koutecky, G. Parchioni, G.-H. Jeung, and E.-C. Hass, Surf. Sci. 156:650 (1985).ADSCrossRefGoogle Scholar
  77. 55.
    D. H. Magers, R. J. Harrison, and R. J. Bartlett, J. Chem. Phys. 84:3284 (1986).ADSCrossRefGoogle Scholar
  78. 56.
    E. A. Rohlfing, D. M. Cox and A. Kaldor, J. Chem. Phys. 81:3322 (1984).ADSCrossRefGoogle Scholar
  79. 57.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature (London) 318:162 (1985).ADSCrossRefGoogle Scholar
  80. 58.
    W. Weltner, Jr., “Magnetic Atoms and Molecules”, Van Nostrand Reinhold, New York, (1983).Google Scholar
  81. 58a.
    M. Vala, K. Zeringue, J. ShakhsEmampour, J.-C. Rivoal, and R. Pyzalski, J. Chem. Phys. 80:2401 (1984); C. Grisolia, J. C. Rivoal, J. Pyka, and M. Vala, J. Chem. Phys. (submitted).ADSCrossRefGoogle Scholar
  82. 59.
    M. E. Jacox, J. Mol. Spectr. 113:286(1985)ADSCrossRefGoogle Scholar
  83. 60.
    W. J. Childs, G. L. Goodman and L. S. Goodman, J. Mol. Spectr. 86:365 (1981).ADSCrossRefGoogle Scholar
  84. 61.
    L. B. Knight, Jr., W. C. Easley, and W. Weltner, Jr., J. Chem. Phys. 54:322 (1971).ADSCrossRefGoogle Scholar
  85. 62.
    C. Devlllers and D. A. Ramsay, Can. J. Phys. 49:2839 (1971).ADSCrossRefGoogle Scholar
  86. 63.
    G. R. Smith and W. Weltner, Jr., J. Chem. Phys. 62:4592 (1975).ADSCrossRefGoogle Scholar
  87. 64.
    C. P. Barrett, R. G. Graham and R. Grinter, Chem. Phys. 86:199 (1984)Google Scholar
  88. 64a.
    W. Schrittenlacher, W. Schroeder, H. H. Rotermund, and D. M. Kolb, Chem. Phys. Lett. 109:7 (1984).ADSCrossRefGoogle Scholar
  89. 65.
    R. R. Lembke, R. F. Ferrante, and W. Weltner, Jr., J. Am. Chem. Soc. 99:416 (1977).CrossRefGoogle Scholar
  90. 66.
    J. M. Brom, Jr. and W. Weltner, Jr., J. Chem. Phys. 58:5322 (1973).ADSCrossRefGoogle Scholar
  91. 67.
    H. Huber and G. A. Ozin, Inorg. Chem. 17:155 (1978)CrossRefGoogle Scholar
  92. 67a.
    W. KlotzbUcher and G. A. Ozin, J. Am. Chem. Soc. 100:2262 (1978),CrossRefGoogle Scholar
  93. 67b.
    W. KlotzbUcher and G. A. Ozin, J. Mo1. Catalysis 3:195 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • William WeltnerJr.
    • 1
  • Richard J. Van Zee
    • 1
  1. 1.Department of ChemistryUniversity of FloridaGainesvilleUSA

Personalised recommendations