Atomic and Electronic Structures of Semiconductor Clusters

  • S. Ohnishi
  • S. Saito
  • C. Satoko
  • S. Sugano


We discuss the magic number and its origin of clusters of group-IV atoms, semiconductor clusters, based on the non-spher1cal model potential study and electronic structure calculations. Stable structures determined by the model potential for the sp3-hybr1d1zed atom are found to be classified into two groups of having six- and five-membered rings, the crystalline and amorphous series, respectively. Magic numbers are 6,10,14,18... for the crystalline series and 5,10,12,16,18,20... for the amorphous series. Detailed reconstruction mechanisms of the magic number clusters are discussed by the analysis of electronic structures of Si6, Si10, Si14, and Si26 of the crystalline series and Si5 and Si20 of the amorphous series. It 1s proposed that the driving force for the reconstruction of clusters of the crystalline series comes from the significant contraction of triangles formed by three atoms in the Si(111) surface induced by the interaction between dangling bonds.


Magic Number Transfer Parameter Dangling Bond Atomic Element Semiconductor Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Proc. 2nd Int. Meet. Small Particles and Inorganic Clusters, Lausanne, 1980, Surf.Sci. 106 (1981). Proc. 3rd Int. Meet. Small Particles and Inorganic Clusters, Berlin, 1984, Surf.Sci. 156 (1985).Google Scholar
  2. 2.
    O. Echt, K. Sattler and E. Recknagel, Phys. Rev. Lett. 47:1121 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen, Phys. Rev. Lett. 52:2141 (1984).ADSCrossRefGoogle Scholar
  4. M. Y. Chou, A. Cleland, and M. L. Cohen, Solid State Commun. 52:654 (1984).CrossRefGoogle Scholar
  5. W. D. Knight, W. A. de Heer, K. Clemenger, and W. A. Saunders, Solid State Commun. 53:445 (1985).ADSCrossRefGoogle Scholar
  6. 4.
    L. A. Bloomfield, R. R. Freeman, and W. L. Brown, Phys. Rev. Lett. 54:2246 (1985).ADSCrossRefGoogle Scholar
  7. T. P. Martin and H. Schaber, J. Chem. Phys. 83:855 (1985).ADSCrossRefGoogle Scholar
  8. 5.
    Y. Ishii, S. Ohnishi, and S. Sugano, Phys. Rev. B 33:5271 (1986).ADSCrossRefGoogle Scholar
  9. 6.
    S. Salto, S. Ohnishi, and S. Sugano, Phys. Rev. B 33:7036 (1986).ADSCrossRefGoogle Scholar
  10. 7.
    E. Blaisten-Barojas and O. Levesque, Phys. Rev. B 34:3910 (1986).ADSCrossRefGoogle Scholar
  11. 8.
    B. P. Feuston, R. K. Kalia, and P. Vashisthta, private communication.Google Scholar
  12. 9.
    F. H. Stillinger and T. A. Weber, Phys. Rev. B 31:5262 (1985).ADSCrossRefGoogle Scholar
  13. 10.
    S. Salto, S. Ohnishi, C. Satoko, and S. Sugano, J. Phys. Soc. Japan 55:1791 (1986).ADSCrossRefGoogle Scholar
  14. 11.
    K. Raghavachari and V. Logovinsky, Phys. Rev. Lett. 55:2853 (1985)ADSCrossRefGoogle Scholar
  15. K. Raghavachari, J. Chem. Phys. 84:5672 (1986).ADSCrossRefGoogle Scholar
  16. 12.
    D. Tomanek and M. A. Schluter, Phys. Rev. Lett. 56:1066 (1986).ADSCrossRefGoogle Scholar
  17. 13.
    C. Satoko, Chem. Phys. Lett. 47:490 (1981)Google Scholar
  18. 13a.
    C. Satoko, Phys. Rev. B 30:1754 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • S. Ohnishi
    • 1
  • S. Saito
    • 1
  • C. Satoko
    • 2
  • S. Sugano
    • 3
  1. 1.Fundamental Research LaboratoriesNEC CorporationMiyazaki, Miyamae-ku, Kawasaki 213Japan
  2. 2.Institute for Molecular ScienceMyodaiji, Okazaki, Aichi 444Japan
  3. 3.Institute for Solid State PhysicsUniversity of TokyoRoppongi, Minato-ku, Tokyo 106Japan

Personalised recommendations