Advertisement

Steepest-Descent Quenches and the Melting of Microclusters

  • Thomas L. Beck
  • R. Stephen Berry

Abstract

Extensive molecular dynamics simulations have been performed on clusters of argon atoms to investigate the microscopic mechanism for the melting transition. The steepest-descent quench technique has been employed along the trajectories at energies in the transition region and in the liquid portion of the caloric curves. The potential minima most frequently accessed at the various energies are thus obtained. The coexistence and magic number phenomena are explained in terms of the geometrical structures accessed and the mechanisms for the motions between structures. Pentagonal structures dominate in the melting of these small clusters.

Keywords

Monte Carlo Bimodal Distribution Magic Number Melting Transition Coexistence Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Briant and J.J. Burton, J. Chem. Phys. 63, 2045 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    R.D. Etters and J.B. Kaelberer, Phys. Rev. A 11, 1068 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Kaelberer and R.D. Etters, J. Chem. Phys. 66, 3233 (1977).ADSCrossRefGoogle Scholar
  4. 4.
    R.D. Etters and J.B. Kaelberer, J. Chem. Phys. 66, 5112 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    D.J. McGinty, J. Chem. Phys. 58, 4733 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    W.D. Kristensen, E.J. Jensen, and R.M.J. Cotterill, J. Chem. Phys. 60, 4161 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    N. Quirke and P. Sheng, Chem. Phys. Lett. 110, 63 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    M.R. Hoare and P. Pal, Adv. Phys. 20, 161 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    see, for example P.J. Steinhardt, D.R. Nelson, and M. Ronchetti, Phys. Rev. Lett. 18, 1297 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    J. Jellinek, T.L. Beck, and R.S. Berry, J. Chem. Phys. 84, 2783 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    T.L. Beck, J. Jellinek, and R.S. Berry, (in preparation).Google Scholar
  12. 12.
    R.S. Berry, T.L. Beck, H.L. Davis, and J. Jellinek, in The Physics and Chemistry ofSmall Clusters, (Plenum, New York).Google Scholar
  13. 13.
    F. Amar and R.S. Berry, 1986, J. Chem. Phys. (in press).Google Scholar
  14. 14.
    F.H. Stillinger and T.A. Weber, Phys. Rev. A 25, 978 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    G. Natanson, F. Amar, and R.S. Berry, J. Chem. Phys. 78, 399 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    R.S. Berry, J. Jellinek, and G. Natanson, Phys. Rev. A. 30, 919 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    T.L. Beck and R.S. Berry, (in preparation).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Thomas L. Beck
    • 1
  • R. Stephen Berry
    • 1
  1. 1.Department of Chemistry and The James Franck InstituteThe University of ChicagoChicagoUSA

Personalised recommendations