Isomerization and Melting of Small Alkali-Halide Clusters

  • Jia Luo
  • Uzi Landman
  • Joshua Jortner


The nature of phase transformations in small alklai-halide clusters is investigated using molecular dynamics simulations. On the basis of systematic studies of clusters of variable sizes, it is concluded that the kinetics and dynamics of the transformations depend on system size. For small clusters, distinct, diffusionless, isomerization occurs. Intermediate size clusters exhibit hierarchical kinetics with isomerizations preceding the onset of diffusion and eventual melting. True sharp melting transition and solid-liquid coexistence is found only for relatively large clusters. This sequence of physical processes versus size can be modeled as a gradual opening of the accessible phase-space and the coalescence of time scales distinguishing intra-well and inter-well dynamics.


Small Cluster Soft Mode Coexistence Region Eventual Melting Neighbor Coordination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. L. Hill, Thermodynamics of Small Systems, (Benjamin, N.Y., 1963).MATHGoogle Scholar
  2. 2.
    G. Natanson, F. Amar and R. S. Berry, J. Chem. Phys. 78, 399 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    J. Jellinek, T. L. Beck and R. S. Berry, J. Chem. Phys. 84, 2783 (1986); see also references to earlier work here and in ref. 2.ADSCrossRefGoogle Scholar
  4. 4.
    R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, (McGraw-Hill, N.Y., 1981), pp. 488–498.Google Scholar
  5. 5.
    P. R. Couchman and W. A. Jessor, Nature 269, 481 (1977).ADSCrossRefGoogle Scholar
  6. 6.
    P. R. Couchman and C. L. Ryan, Phil. Mag. A37, 369 (1978);ADSGoogle Scholar
  7. 6a.
    R. Balian and C. Bloch, Ann. Phys. N.Y. 60, 401 (1970).MathSciNetADSCrossRefMATHGoogle Scholar
  8. 7.
    For recent reviews see: F. F. Abraham, J. Vac. Sci. Technol. B2, 534 (1984);Google Scholar
  9. 7a.
    U. Landman et al. in Mat. Res. Soc. Proc. 63, 273 (1985).Google Scholar
  10. 8.
    This is reminiscent of the picture advanced by F. M. Stillinyer and T. A. Weber for a liquid, see: Kinam A5, 159 (1981);Google Scholar
  11. 8a.
    This is reminiscent of the picture advanced by F. M. Stillinyer and T. A. Weber for a liquid, see: Phys. Rev. A25, 978 (1972).ADSGoogle Scholar
  12. 9.
    T. P. Martin, Phys. Rep. 95, 167 (1983),ADSCrossRefGoogle Scholar
  13. 9a.
    with the parameters given by F. G. Fumi and M. P. Tosi, J. Phys. Chem. Solids 25, 31, 45 (1964).ADSCrossRefGoogle Scholar
  14. 10.
    D. A. McQuarrie, Statistical Mechanics, (Harper and Row, N. Y., 1976), Chap. 21, 22.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jia Luo
    • 1
  • Uzi Landman
    • 1
  • Joshua Jortner
    • 2
  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of ChemistryTel Aviv UniversityIsrael

Personalised recommendations