Advertisement

Melting and Freezing of Microclusters

  • R. Stephen Berry
  • Thomas L. Beck
  • Heidi L. Davis
  • Julius Jellinek

Abstract

One of the most intriguing unsolved problems in the physical sciences is the elucidation at the atomic level of freezing and melting. Despite the great advances in the description of the critical region, the “simple” first-order phase transition remains as elusive a problem as ever. This topic has belonged, traditionally, to condensed matter science, so that it has been addressed with the tools we use to study bulk materials. This in turn means that virtually all attempts to understand freezing and melting have been carried out in schemes based on infinite numbers of atoms. Some simulations done in the 1970’s, however, gave powerful signals that we could learn a great deal about freezing and melting from the study of small clusters. We shall review these briefly and then go on to describe how following those signals has indeed led to new insights into the nature of the equilibrium between solids and liquids. This journey has exposed new phenomena we should expect to see in finite clusters, phenomena in a sense richer and more varied than the simple first-order phase transition between bulk solids and bulk liquids.

Keywords

Partition Function Monte Carlo Argon Atom Correlation Diagram Bulk Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amar, F., Kellman, M.E. and Berry, R.S., 1979, J. Chem. Phys. 70:1973.ADSCrossRefGoogle Scholar
  2. Amar, F. and Berry, R.S., 1986, J. Chem. Phys. (in press).Google Scholar
  3. Beck, T.L., Jellinek, J. and Berry, R.S. (in preparation).Google Scholar
  4. Berry, R.S., Jellinek, J. and Natanson, G., 1984a, Chem. Phys. Lett. 107:227.ADSCrossRefGoogle Scholar
  5. Berry, R.S., Jellinek, J. and Natanson, G., 1984b, Phys. Rev. A 30:919.ADSGoogle Scholar
  6. Briant, CL. and Burton, J.J., 1973, Nat. Phys. Sci. 243:100.ADSCrossRefGoogle Scholar
  7. Briant, C.L. and Burton, J.J., 1975a, J. Chem. Phys. 63:2045.ADSCrossRefGoogle Scholar
  8. Briant, C.L. and Burton, J.J., 1975b, J. Chem. Phys. 63:3327.ADSCrossRefGoogle Scholar
  9. Briant, C.L. and Burton, J.J., 1976, J. Chem. Phys. 64:2888.ADSCrossRefGoogle Scholar
  10. Cotterill, R.M., Damgaard Christensen, W., Martin, J.W., Petersen, L.B. and Jensen, E.J., 1973, Comput. Phys. Comm. 5:28.ADSCrossRefGoogle Scholar
  11. Damgaard Christensen, W., Jensen, E.J. and Cotterill, R.M., 1974, J. Chem. Phys. 60:4161.ADSCrossRefGoogle Scholar
  12. Davis. H.L., Jellinek, J. and Berry, R.S. (in preparation).Google Scholar
  13. Eichenauer, D. and LeRoy, R.J., 1986 (submitted to Chem. Phys. Lett.).Google Scholar
  14. Etters, R.D. and Kaelberer, J.B., 1975, Phys. Rev. A 11:1068.ADSGoogle Scholar
  15. Etters, R.D. and Kaelberer, J.B., 1977, J. Chem. Phys. 66:5112.ADSCrossRefGoogle Scholar
  16. Etters, R.D., Danilowicz, R. and Dugan, J., 1977, J. Chem. Phys. 67:1570.ADSCrossRefGoogle Scholar
  17. Etters, R.D., Danilowicz, R. and Kaelberer, J.B., 1977, J. Chem. Phys. 67:4145.ADSCrossRefGoogle Scholar
  18. Etters, R.D. and Danilowicz, R., 1979, J. Chem. Phys. 71:4647.CrossRefGoogle Scholar
  19. Ezra, G.S. and Berry, R.S., 1982, J. Chem. Phys. 76:3679.ADSCrossRefGoogle Scholar
  20. Farges, J., Raoult, B. and Torchet, G., 1973, J. Chem. Phys. 59:3454.ADSCrossRefGoogle Scholar
  21. Farges, J., deFaraudy, M.F., Raoult, B. and Torchet, G., 1983, J. Chem. Phys. 78:5067.ADSCrossRefGoogle Scholar
  22. Farges, J., deFaraudy, M.F., Raoult, B. and Torchet, G., 1986, J. Chem. Phys. 84:3491.ADSCrossRefGoogle Scholar
  23. Gartenhaus, S. and Schwartz, C., 1957, Phys. Rev. 108:482.MathSciNetADSCrossRefMATHGoogle Scholar
  24. Gough, T.E., Knight, D.G. and Scoles, G., 1983, Chem. Phys. Lett. 97:155.ADSCrossRefGoogle Scholar
  25. Heenan, R.K. and Barteil, L.S., 1982a, J. Chem. Phys. 78:1265.ADSCrossRefGoogle Scholar
  26. Heenan, R.K. and Bartell, L.S., 1982b, J. Chem. Phys. 78:1270.ADSCrossRefGoogle Scholar
  27. Jellinek, J., Beck, T.L. and Berry, R. S., 1986, J. Chem. Phys. 84:2783.ADSCrossRefGoogle Scholar
  28. Kaelberer, J.B. and Etters, R.D., 1977, J. Chem. Phys. 66:3233.ADSCrossRefGoogle Scholar
  29. Kellman, M.E. and Berry, R.S., 1976, Chem. Phys. Lett. 42:327.ADSCrossRefGoogle Scholar
  30. Kellman, M.E., Amar, F. and Berry, R.S., 1980, J. Chem. Phys. 73:2387.MathSciNetADSCrossRefGoogle Scholar
  31. LaViolette, R.A. and Stillinger, F.H., 1985, J. Chem. Phys. 83:4079.ADSCrossRefGoogle Scholar
  32. Lee, J.K., Barker, J.A. and Abraham, F.F., 1973, J. Chem. Phys. 58:3166.ADSCrossRefGoogle Scholar
  33. McGinty, D.J., 1973, J. Chem. Phys. 58:4733.ADSCrossRefGoogle Scholar
  34. Natanson, G., Amar, F. and Berry, R.S., 1983, J. Chem. Phys. 78:399.ADSCrossRefGoogle Scholar
  35. Nauchitel, V.V. and Pertsin, A.J., 1980, Mol. Phys. 40:1341.ADSCrossRefGoogle Scholar
  36. Quirke, N. and Sheng, P., 1984, Chem. Phys. Lett., 110:63.ADSCrossRefGoogle Scholar
  37. Stace, A.J., 1983, Chem. Phys. Lett. 99:470.ADSCrossRefGoogle Scholar
  38. Stillinger, F.H. and Weber, T.A., 1981, Kinam 3A:159.Google Scholar
  39. Stillinger, F.H. and Weber, T.A., 1982, Phys. Rev. A 25:978.ADSGoogle Scholar
  40. Stillinger, F.H. and Weber, T.A., 1983a, Phys. Rev. A 28:2408.ADSGoogle Scholar
  41. Stillinger, F.H. and Weber, T.A., 1983b, J. Phys. Chem. 87:2833.CrossRefGoogle Scholar
  42. Valente, E.J. and Bartell, L.S., 1983a, J. Chem. Phys. 80:1451.ADSCrossRefGoogle Scholar
  43. Valente, E.J. and Bartell, L.S., 1983b, J. Chem. Phys. 80:1458.ADSCrossRefGoogle Scholar
  44. Weber, T.A. and Stillinger, F.H., 1984, J. Chem. Phys. 81:5089, 5095.ADSCrossRefGoogle Scholar
  45. Yamada, K. and Winnewisser, M., 1976, Z. Naturforsch. A31:134.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. Stephen Berry
    • 1
  • Thomas L. Beck
    • 1
  • Heidi L. Davis
    • 1
  • Julius Jellinek
    • 2
  1. 1.Department of ChemistryThe University of ChicagoChicagoUSA
  2. 2.Chemistry DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations