Skip to main content

Electron Localization and Excitation Dynamics in Small Clusters

  • Chapter

Abstract

Structural, electronic, dynamic and chemical characteristics of materials depend primarily on the state (phase) and degree (size) of aggregation. Small clusters often exhibit unique physical and chemical phenomena, of both fundamental and technological significance, and provide the opportunity for exploration of the transition from molecular to condensed matter systems. Particularly, investigations of the correlations between physical properties and degree of aggregation allow elucidation of the development of collective phenomena responsible for phase transformations1,2 (such as nucleation, melting, and structural transitions), studies of the excitation dynamics and the kinetics of reactive processes3,4 (such as fragmentation) and of the energetics and dynamics of electron attachment,5,6 solvation phenomena7 and physical processes induced by electron attachment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Jellinek, T. L. Beck and R. S. Berry, J. Chem. Phys. 84, 2783 (1983) and references therein.

    Article  ADS  Google Scholar 

  2. J. Luo, U. Landman and J. Jortner, these proceedings.

    Google Scholar 

  3. D. Scharf, J. Jortner and U. Landman, Chem. Phys. Letts. 126, 495 (1986).

    Article  ADS  Google Scholar 

  4. J. Jortner, Ber. Bunsenges. Physik. Chem. 88, 188 (1984).

    Google Scholar 

  5. U. Landman, D. Scharf, and J. Jortner, Phys. Rev. Letts. 54, 1860 (1985).

    Article  ADS  Google Scholar 

  6. T. D. Mark and A. W. Castleman Jr. in Adv. Atomic and Mol. Phys. (D. R. Bates and B. Bederson, Eds.), Vol. 20 (1984).

    Google Scholar 

  7. See papers in J. Phys. Chem. 88 (1984).

    Google Scholar 

  8. F. F. Abraham, J. Vac. Sci. Technol. B2, 534 (1984).

    Google Scholar 

  9. U. Landman et al., Mat. Res. Soc. Symp. Proc. Vol. 63, 273 (1985).

    Article  Google Scholar 

  10. See papers in Ber. Bunsenges. Physik. Chem. 88, 188 (1984).

    Google Scholar 

  11. H. Haberland, Surf. Sci. 156, 305 (1985);

    Article  ADS  Google Scholar 

  12. J. J. Saenz, J. M. Soler and N. Garcia, Surf. Sci. 156, 121 (1985).

    Article  ADS  Google Scholar 

  13. J. W. Brady and J. D. Doll, J. Chem. Phys. 73, 2767 (1980).

    Article  ADS  Google Scholar 

  14. J. Jortner, E. E. Koch and N. Schwentner in: Photo-Physics and Photochemistry in the Vacuum UV, S. P. McGlynn et al., Eds., (Reidel, Dordrecht, 1985), p. 515.

    Chapter  Google Scholar 

  15. W. D. Kristensen, E. J. Jensen and M. J. Cotterill, J. Chem. Phys. 60, 4161 (1974).

    Article  ADS  Google Scholar 

  16. I. Messing, B. Raz and J. Jortner, J. Chem. Phys. 66, 2239 (1977).

    Article  ADS  Google Scholar 

  17. A. E. Sherwood and J. M. Prasunitz, J. Chem. Phys. 41, 429 (1964).

    Article  ADS  Google Scholar 

  18. K. T. Gillen, R. P. Saxon, D. C. Lorentz, G. E. Ice and R. E. Olson, J. Chem. Phys. 64, 1925 (1975).

    Article  ADS  Google Scholar 

  19. D. Scharf, U. Landman and J. Jortner (to be published).

    Google Scholar 

  20. T. P. Martin, Phys. Rep. 95, 167 (1983).

    Article  ADS  Google Scholar 

  21. F. G. Fumi and M. P. Tosi, J. Phys. Chem. Solids 25, 31, 45 (1964).

    Article  ADS  Google Scholar 

  22. R. W. Shaw, Phys. Rev. 174, 769 (1968); see also QUPID Studies of e- +Na+ and (NaCl)- in D. Scharf, J. Jortner and U. Landman (Chem. Phys. Letts. 1986, in press).

    Article  ADS  Google Scholar 

  23. M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984).

    Article  ADS  Google Scholar 

  24. D. Chandler and P. G. Wolynes, J. Chem. Phys. 79, 4078 (1981).

    Article  ADS  Google Scholar 

  25. B. De Raedt, H. Sprik and H. L. Klein, J. Chem. Phys. 80, 5719 (1984).

    Article  ADS  Google Scholar 

  26. D. Chandler, J. Phys. Chem. 88, 3400 (1984).

    Article  Google Scholar 

  27. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

  28. M. F. Herman, E. J. Bruskin and B. J. Berne, J. Chem. Phys. 76, 5150 (1982).

    Article  ADS  Google Scholar 

  29. A. L. Nichols, D. Chandler, V. Singh and D. M. Richardson, J. Chem. Phys. 81, 5109 (1984).

    Article  ADS  Google Scholar 

  30. B. J. Berne and D. Thirumalai, in Ann. Rev. Phys. Chem. (to appear, 1986).

    Google Scholar 

  31. J. R. Fox and H. C. Anderson, J. Phys. Chem. 88, 4019 (1984).

    Article  Google Scholar 

  32. U. Landman, R. N. Barnett, C. L. Cleveland and P. Norlander, in “Tunneling”, Eds. J. Jortner and B. Pullman (Reidel, 1986).

    Google Scholar 

  33. J. Phys. Chem. 88, 3699–3914 (1984); Electrons in Fluids, J. Jortner and P. N. Kestner, Eds. (Springer, N. Y., 1973).

    Google Scholar 

  34. H. Haberland, H. G. Schindler and D. R. Worsnop, Ber. Bunsenges, Chem. 88, 270 (1984);

    Article  Google Scholar 

  35. H. Haberland, H. G. Schindler and D. R. Worsnop, J. Phys. Chem. 88, 3903 (1984);

    Article  Google Scholar 

  36. H. Haberland, H. G. Schindler and D. R. Worsnop, J. Chem. Phys. 81, 3742 (1984).

    Article  ADS  Google Scholar 

  37. J. V. Coe, D. R. Worsnop and K. H. Bowen (J. Chem. Phys., 1986).

    Google Scholar 

  38. B. K. Rao and N. R. Kestner, J. Chem. Phys. 80, 1587 (1984) and references therein.

    Article  ADS  Google Scholar 

  39. M. Sprik, R. W. Impey and M. L. Klein, J. Chem. Phys. 83, 5802 (1985).

    Article  ADS  Google Scholar 

  40. C.D. Jonah, C. Romero and A. Rahman, Chem. Phys. Lett. 123, 209 (1986).

    Article  ADS  Google Scholar 

  41. A. Wallquist, D. Thirumalai and B. J. Berne, J. Chem. Phys. 85, 1583 (1986).

    Article  ADS  Google Scholar 

  42. J. R. Reimers, R. O. Watts and M. L. Klein, Chem. Phys. 64, 95 (1982).

    Article  Google Scholar 

  43. J. R. Reimers and R. D. Watts, Chem. Phys. 85, 83 (1984). This paper as well as the description of the potential in ref. 39 (Eq. 13 and Table 1) contain several ambiguities and typographical errors. When corrected we reproduce their results.

    ADS  Google Scholar 

  44. J. N. Bardsley, case studies in Atomic Physics 4, 299 (1974);

    Google Scholar 

  45. G. G. Kleiman and U. Landman, Phys. Rev. B8, 5484 (1973).

    ADS  Google Scholar 

  46. C. W. Kerr and M. Karplus in Water, F. Franks, ed., (Plenum, N. Y., 1972), p. 21;

    Google Scholar 

  47. M. W. Ribarsky, W. D. Luedtke and U. Landman, Phys. Rev. B32, 1430 (1985).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Landman, U., Barnett, R.N., Cleveland, C.L., Scharf, D., Jortner, J. (1987). Electron Localization and Excitation Dynamics in Small Clusters. In: Jena, P., Rao, B.K., Khanna, S.N. (eds) Physics and Chemistry of Small Clusters. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0357-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0357-3_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0359-7

  • Online ISBN: 978-1-4757-0357-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics