Electron Localization and Excitation Dynamics in Small Clusters

  • Uzi Landman
  • R. N. Barnett
  • C. L. Cleveland
  • Dafna Scharf
  • Joshua Jortner


Structural, electronic, dynamic and chemical characteristics of materials depend primarily on the state (phase) and degree (size) of aggregation. Small clusters often exhibit unique physical and chemical phenomena, of both fundamental and technological significance, and provide the opportunity for exploration of the transition from molecular to condensed matter systems. Particularly, investigations of the correlations between physical properties and degree of aggregation allow elucidation of the development of collective phenomena responsible for phase transformations1,2 (such as nucleation, melting, and structural transitions), studies of the excitation dynamics and the kinetics of reactive processes3,4 (such as fragmentation) and of the energetics and dynamics of electron attachment,5,6 solvation phenomena7 and physical processes induced by electron attachment.


Vibrational Energy Excess Electron Vibrational Excitation Vibrational Relaxation Electron Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Jellinek, T. L. Beck and R. S. Berry, J. Chem. Phys. 84, 2783 (1983) and references therein.ADSCrossRefGoogle Scholar
  2. 2.
    J. Luo, U. Landman and J. Jortner, these proceedings.Google Scholar
  3. 3.
    D. Scharf, J. Jortner and U. Landman, Chem. Phys. Letts. 126, 495 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    J. Jortner, Ber. Bunsenges. Physik. Chem. 88, 188 (1984).Google Scholar
  5. 5.
    U. Landman, D. Scharf, and J. Jortner, Phys. Rev. Letts. 54, 1860 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    T. D. Mark and A. W. Castleman Jr. in Adv. Atomic and Mol. Phys. (D. R. Bates and B. Bederson, Eds.), Vol. 20 (1984).Google Scholar
  7. 7.
    See papers in J. Phys. Chem. 88 (1984).Google Scholar
  8. 8.
    F. F. Abraham, J. Vac. Sci. Technol. B2, 534 (1984).Google Scholar
  9. 9.
    U. Landman et al., Mat. Res. Soc. Symp. Proc. Vol. 63, 273 (1985).CrossRefGoogle Scholar
  10. 10.
    See papers in Ber. Bunsenges. Physik. Chem. 88, 188 (1984).Google Scholar
  11. 11.
    H. Haberland, Surf. Sci. 156, 305 (1985);ADSCrossRefGoogle Scholar
  12. 11a.
    J. J. Saenz, J. M. Soler and N. Garcia, Surf. Sci. 156, 121 (1985).ADSCrossRefGoogle Scholar
  13. 12.
    J. W. Brady and J. D. Doll, J. Chem. Phys. 73, 2767 (1980).ADSCrossRefGoogle Scholar
  14. 13.
    J. Jortner, E. E. Koch and N. Schwentner in: Photo-Physics and Photochemistry in the Vacuum UV, S. P. McGlynn et al., Eds., (Reidel, Dordrecht, 1985), p. 515.CrossRefGoogle Scholar
  15. 14.
    W. D. Kristensen, E. J. Jensen and M. J. Cotterill, J. Chem. Phys. 60, 4161 (1974).ADSCrossRefGoogle Scholar
  16. 15.
    I. Messing, B. Raz and J. Jortner, J. Chem. Phys. 66, 2239 (1977).ADSCrossRefGoogle Scholar
  17. 16.
    A. E. Sherwood and J. M. Prasunitz, J. Chem. Phys. 41, 429 (1964).ADSCrossRefGoogle Scholar
  18. 17.
    K. T. Gillen, R. P. Saxon, D. C. Lorentz, G. E. Ice and R. E. Olson, J. Chem. Phys. 64, 1925 (1975).ADSCrossRefGoogle Scholar
  19. 18.
    D. Scharf, U. Landman and J. Jortner (to be published).Google Scholar
  20. 19.
    T. P. Martin, Phys. Rep. 95, 167 (1983).ADSCrossRefGoogle Scholar
  21. 20.
    F. G. Fumi and M. P. Tosi, J. Phys. Chem. Solids 25, 31, 45 (1964).ADSCrossRefGoogle Scholar
  22. 21.
    R. W. Shaw, Phys. Rev. 174, 769 (1968); see also QUPID Studies of e- +Na+ and (NaCl)- in D. Scharf, J. Jortner and U. Landman (Chem. Phys. Letts. 1986, in press).ADSCrossRefGoogle Scholar
  23. 22.
    M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984).ADSCrossRefGoogle Scholar
  24. 23.
    D. Chandler and P. G. Wolynes, J. Chem. Phys. 79, 4078 (1981).ADSCrossRefGoogle Scholar
  25. 24.
    B. De Raedt, H. Sprik and H. L. Klein, J. Chem. Phys. 80, 5719 (1984).ADSCrossRefGoogle Scholar
  26. 25.
    D. Chandler, J. Phys. Chem. 88, 3400 (1984).CrossRefGoogle Scholar
  27. 26.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).MATHGoogle Scholar
  28. 27.
    M. F. Herman, E. J. Bruskin and B. J. Berne, J. Chem. Phys. 76, 5150 (1982).ADSCrossRefGoogle Scholar
  29. 28.
    A. L. Nichols, D. Chandler, V. Singh and D. M. Richardson, J. Chem. Phys. 81, 5109 (1984).ADSCrossRefGoogle Scholar
  30. 29.
    B. J. Berne and D. Thirumalai, in Ann. Rev. Phys. Chem. (to appear, 1986).Google Scholar
  31. 30.
    J. R. Fox and H. C. Anderson, J. Phys. Chem. 88, 4019 (1984).CrossRefGoogle Scholar
  32. 31.
    U. Landman, R. N. Barnett, C. L. Cleveland and P. Norlander, in “Tunneling”, Eds. J. Jortner and B. Pullman (Reidel, 1986).Google Scholar
  33. 32.
    J. Phys. Chem. 88, 3699–3914 (1984); Electrons in Fluids, J. Jortner and P. N. Kestner, Eds. (Springer, N. Y., 1973).Google Scholar
  34. 33.
    H. Haberland, H. G. Schindler and D. R. Worsnop, Ber. Bunsenges, Chem. 88, 270 (1984);CrossRefGoogle Scholar
  35. 33a.
    H. Haberland, H. G. Schindler and D. R. Worsnop, J. Phys. Chem. 88, 3903 (1984);CrossRefGoogle Scholar
  36. 33b.
    H. Haberland, H. G. Schindler and D. R. Worsnop, J. Chem. Phys. 81, 3742 (1984).ADSCrossRefGoogle Scholar
  37. 34.
    J. V. Coe, D. R. Worsnop and K. H. Bowen (J. Chem. Phys., 1986).Google Scholar
  38. 35.
    B. K. Rao and N. R. Kestner, J. Chem. Phys. 80, 1587 (1984) and references therein.ADSCrossRefGoogle Scholar
  39. 36.
    M. Sprik, R. W. Impey and M. L. Klein, J. Chem. Phys. 83, 5802 (1985).ADSCrossRefGoogle Scholar
  40. 37.
    C.D. Jonah, C. Romero and A. Rahman, Chem. Phys. Lett. 123, 209 (1986).ADSCrossRefGoogle Scholar
  41. 38.
    A. Wallquist, D. Thirumalai and B. J. Berne, J. Chem. Phys. 85, 1583 (1986).ADSCrossRefGoogle Scholar
  42. 39.
    J. R. Reimers, R. O. Watts and M. L. Klein, Chem. Phys. 64, 95 (1982).CrossRefGoogle Scholar
  43. 40.
    J. R. Reimers and R. D. Watts, Chem. Phys. 85, 83 (1984). This paper as well as the description of the potential in ref. 39 (Eq. 13 and Table 1) contain several ambiguities and typographical errors. When corrected we reproduce their results.ADSGoogle Scholar
  44. 41.
    J. N. Bardsley, case studies in Atomic Physics 4, 299 (1974);Google Scholar
  45. 41a.
    G. G. Kleiman and U. Landman, Phys. Rev. B8, 5484 (1973).ADSGoogle Scholar
  46. 42.
    C. W. Kerr and M. Karplus in Water, F. Franks, ed., (Plenum, N. Y., 1972), p. 21;Google Scholar
  47. 42a.
    M. W. Ribarsky, W. D. Luedtke and U. Landman, Phys. Rev. B32, 1430 (1985).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Uzi Landman
    • 1
  • R. N. Barnett
    • 1
  • C. L. Cleveland
    • 1
  • Dafna Scharf
    • 2
  • Joshua Jortner
    • 2
  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of ChemistryTel Aviv UniversityTel AvivIsrael

Personalised recommendations