Advertisement

A Fragment Cluster Study of Polyacetylene

  • J. A. Darsey
  • N. R. Kestner
  • B. K. Rao

Abstract

Using CH fragments to obtain an optimized cluster, a model calculation has been made for polyacetylene. The model reproduces the bond alternation as expected due to Peierls condition. After removing the errors due to a finite length of the chain, a complete rotational potential energy surface has been generated for the cis-transoidal isomer of polyacetylene. The potential depends upon rotations about two successive single bonds in the backbone. The potential surface indicates the possibility of formation of a super helix.

Keywords

Potential Energy Surface Simultaneous Rotation Steric Hinderance Bond Alternation Isomeric Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Natta, G. Mazzanti, and P. Carradini, Alti Accad. Naz. Lincei Rend. Sci. Fis. Mat. Nat. 25, 2 (1985).Google Scholar
  2. 2.
    H. Shirakawa and S. Ikeda, Polym. J. 2, 231 (1971).CrossRefGoogle Scholar
  3. 3.
    H. Shirakawa and S. Ikeda, J. Polym. Sci. Polym. Sci. Polym. Chem. Ed. 12, 11 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    T. Ito, H. Shirakawa and S. Ikeda, J. Polym. Sci. Polym. Chem. Ed. 12, 11 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    James C. W. Chien, “Polyacetylene”, (Academic Press, N. Y., 1984), pages 19–23.Google Scholar
  6. 6.
    A. G. MacDiarmid and A. J. Heeger, Synth. Met. 1, 101 (1979).CrossRefGoogle Scholar
  7. 7.
    I. B. Goldberg, H. R. Crowe, P. R. Newman, A. J. Heeger, and A. G. MacDiarmid, J. Chem. Phys. 70, 1132 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    B. R. Weinberger, J. Kaufer, A. Pron, A. J. Heeger, and A. G. MacDiarmid, Phys. Rev. B 20, 233 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    S. Lefront, L. S. Lichtman, H. Temkin, D. B. Fitchen, D. C. Miller, G. E. Whitehall, and J. H. Burlitch, Solid State Commun. 29, 191 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Tomkiewicz, T. D. Schultz, H. B. Brom, A. R. Taranko, T. C. Clarke, and G. B. Street, Phys. Rev. B, 24, 4348 (1981).ADSCrossRefGoogle Scholar
  11. 11.
    B. K. Rao, J. A. Darsey, and N. R. Kestner, J. Chem. Phys. 79 (3), 1377 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    E. Cernia and L. D’Ilario, J. Polym. Sci. Polym. (Chem. Ed.) 21, 2163 (1983).CrossRefGoogle Scholar
  13. 13.
    B. K. Rao, J. A. Darsey, and N. R. Kestner, Phys. Rev. B 31 (2), 1187 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    R. E. Peierls, “Quantum Theory of Solids”, (Clarendon, Press, Oxford, 1955).MATHGoogle Scholar
  15. 15.
    J. L. Bredas, R. R. Chance, R. Silbey, G. Nicolas, and Ph. Durand, J. Chem. Phys. 75, 255 (1981).ADSCrossRefGoogle Scholar
  16. 16.
    J. L. Bredas, R. R. Chance, R. H. Baughman and R. Silvey, J. Chem. Phys. 76, 3673 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    W. K. Ford, C. B. Duke, and A. Paton, J. Chem. Phys. 77, 4564 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    H. Shirakawa, T. Ito, and Ikeda, Makromol. Chem. 179, 1565 (1978).CrossRefGoogle Scholar
  19. 19.
    J. A. Darsey and B. K. Rao, Macromolecules 14, 1575 (1981).ADSCrossRefGoogle Scholar
  20. 20.
    W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, “Ab Initio Molecular Orbital Theory”, (John Wiley, N.Y. 1986).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. A. Darsey
    • 1
  • N. R. Kestner
    • 2
  • B. K. Rao
    • 3
  1. 1.Tarleton State UniversityStephenvilleUSA
  2. 2.Louisiana State UniversityBaton RougeUSA
  3. 3.Virginia Commonwealth UniversityRichmondUSA

Personalised recommendations