Atomic Structure of Small Clusters : The Why and How of the Five-Fold Symmetry

  • J. Farges
  • M. F. de Feraudy
  • B. Raoult
  • G. Torchet


Particles with pentagonal symmetry which have been observed by microscopy in metal deposits possess the normal fcc structure, as revealed by electron diffraction. However, at the first stage of their formation, a nucleus with anomalous structure was existing, this structure being related with the nucleus shape. The structure characteristic of the ico-sahedral shape has been effectively observed by electron diffraction in Ar clusters comprising a few hundreds of atoms. For a given number of atoms this structure proves to be more stable than that of small fcc microcrys-tals since at the expense of some elastic distortions and twin formation, it allows a better surface energy. However, this structure cannot be grown up to macroscopic sizes due to the compression of the central region by external layers.


Additional Atom Pentagonal Bipyramid Elastic Distortion Icosahedral Cluster Macroscopic Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ino, J. Phys. Soc. Jap., 21: 346 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    M.R. Hoare and J.A. Mc limes, Adv. Phys., 32: 791 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    J. Farges, M.F. de Feraudy, B. Raoult and G. Torchet, J. Chem. Phys., 78: 5067 (1983).ADSCrossRefGoogle Scholar
  4. 4.
    I.A. Harris, R.S. Kidwell and J.A. Northby, Phys. Rev. Letters, 53: 2390 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    A. Mackay, Acta Crystallogr., 15: 916 (1962).CrossRefGoogle Scholar
  6. 6.
    C.Y. Yang, J. Cryst. Growth, 47: 274 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    J. Farges, M.F. de Feraudy, B. Raoult and G. Torchet, Acta Crystallogr., A38: 656 (1982).ADSGoogle Scholar
  8. 8.
    B.G. Bagley, Nature, 225: 1040 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    J. Farges, M.F. de Feraudy, B. Raoult and G. Torchet, J. Chem Phys., 84: 3491 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    C. Solliard, Ph. Buffat and F. Faes, J. Cryst. Growth 32: 123 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    B.G. De Baer and G.D. Stein, Surf. Sci., 106: 84 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    C. Solliard, thèse n° 497, Lausanne (Switzerland) (1983).Google Scholar
  13. 13.
    M. Brieu, thèse n° 1260, Toulouse (France) (1986).Google Scholar
  14. 14.
    M. Gillet, J. Cryst. Growth, 36: 239 (1976).ADSCrossRefGoogle Scholar
  15. 15.
    L.D. Marks and D.J. Smith, J. Cryst. Growth, 54: 425 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. Farges
    • 1
  • M. F. de Feraudy
    • 1
  • B. Raoult
    • 1
  • G. Torchet
    • 1
  1. 1.Laboratoire de Physique des Solides, LA 02Université de Paris-SudOrsayFrance

Personalised recommendations