A Theoretical Study of Carbon Clusters: Equilibrium Geometries and Electronic Structures of Cn

  • L. S. Ott
  • A. K. Ray


In recent years, there has been widespread interest in the theoretical investigation of clusters of atoms (Schaefer 1975, Echt et al. 1981, Muhlback et al. 1982, Messmer 1982, Knight et al. 1984, Ray et al. 1985, Ray 1986). The understanding of the chemistry and physics of clusters is of signal importance in many diverse areas, such as catalysis and combustion. Such clusters are also often used to model bulk solid-state phenomena and their surfaces. Newly developed experimental techniques also make it possible to study the transition from cluster to bulk behavior. Much of the earlier work has been on metal clusters, specifically alkali metal clusters (Knight et al. 1984, Clemenger 1985), where “magic numbers” have been identified in the relative populations of aggregates of atoms. In a cluster experiment, the existence of these magic numbers are identified as local maxima in the cluster abundance spectrum at certain “magic” cluster sizes. For these metals, the spherical jellium model (Knight et al. 1984, Chou et al. 1984) provide a good understanding of the existence of magic numbers, predicted to occur at 2, 8, 20, 40, etc. Similar work has been reported on the formation of “magic clusters” for molecules (Beuhler 1982) and rare gases (Echt et al. 1981).


Magic Number Carbon Cluster Singlet Ground State Carbon Star Triplet Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernhold J. and Phillips J. C., to be published.Google Scholar
  2. Bernhold J. and Phillips J. C., to be published.Google Scholar
  3. Beuhler R. J. and Friedman L. 1982 J. Chem. Phys. 77:2549.Google Scholar
  4. Bloomfield L. A. Freeman R. R. and Brown W. L. 1985 Phys. Rev. Lett. 54:2246.Google Scholar
  5. Bloomfield L. A., Geusic M. E., Freeman R. R. And Brown W. L. 1985 Chem. Phys. Lett. 121:33Google Scholar
  6. Chou M. Y., Cleland A. and Cohen M. L. 1984 Solid St. Comm. 52:645.ADSCrossRefGoogle Scholar
  7. Clemenger K. 1985 Phys. Rev. B. 32:1359.ADSCrossRefGoogle Scholar
  8. Clementi E. 1961 J. Am. Chem. Soc. 83:4501.CrossRefGoogle Scholar
  9. Clementi E. and McLean A. D. 1962 J. Chem. Phys. 36:45.Google Scholar
  10. Dupuis M., Spangler D. and Wendoloski 1979 NRCC Report.Google Scholar
  11. Echt O., Sattler K. and Recknagel E. 1981 Phys. Rev. Lett. 47:1121.Google Scholar
  12. Ewing D. W. and Pfeiffer G. V. 1982 Chem. Phys. Lett 86:365.Google Scholar
  13. Fougere P. F. and Nesbet R. K. 1966 J. Chem. Phys. 44:285.Google Scholar
  14. Furstenau N. and Hillenkamp F. 1981 Int. J. Mass. Spect. 37:155.Google Scholar
  15. Gupta S. K. and Gringerich K. A. 1979 J. Chem. Phys. 71:3072.Google Scholar
  16. Heath J. R., Liu Y., O’Grien S. C. Zhang Q. L. Curl R. F., Smalley R. E., and Tittel F. K. 1985 J. Chem. Phys. 83:5520.Google Scholar
  17. Hoffmann R. 1966 Tetrahedron 22:521.CrossRefGoogle Scholar
  18. Knight W. D., Clemenger K. de Heer W. A., Saunders W. A., Chou M. Y. and Cohen M. L. 1984 Phys. Rev. Lett 52:2141.Google Scholar
  19. Koopmans T. 1934 Physica 1:104.ADSCrossRefGoogle Scholar
  20. Liskow D. H. Bender C. F. and Schaefer H. F. III 1972 J. Chem. Phys 56:5075.Google Scholar
  21. Martin T. P. and Schaber 1985 J. Chem. Phys. 83:855.Google Scholar
  22. Messmer R. P. 1982, Springer Series in Chemical Physics 20:315 (eds. Vanselow R. and Howe R., published by Springer-Verlag, New York, 1982).Google Scholar
  23. Muhlback J., Sattler K. and Recknagel E. 1982 Phys. Lett. 87A:418.ADSGoogle Scholar
  24. Peric-Radic J., Romelt J., Peyerimhoff S. D. and Buenker R. J. 1977 Chem. Phys. Lett. 50:344.Google Scholar
  25. Philips J. C. Chem. Rev. to be published.Google Scholar
  26. Pitzer K. S. and Clementi E. 1959 J. Am. Chem. Soc. 81:4477.Google Scholar
  27. Raghavachari K. and Logovinsky V. 1985 Phys. Rev. Lett. 55:2583.CrossRefGoogle Scholar
  28. Ransil B. J. 1960 Rev. Mod. Phys. 32:245.Google Scholar
  29. Rao B. K., Khanna S. N. and Jena P. Solid St. Comm. 58:53.Google Scholar
  30. Ray A. K., Fry J. L. and Myles C. W. 1985 J. Phys. B. 18:381.Google Scholar
  31. Ray A. K. 1986 J. Phys. B. 19:1253.Google Scholar
  32. Ray A. K. 1986 Bull. Am. Phys. Soc. 31:682.Google Scholar
  33. Rohlfing E. A. Cox D. M. and Kaldor A. 1984 J. Chem. Phys. 81:3322.Google Scholar
  34. Romelt J., Peyerimhoff S. D. and Buenker 1978 Chem. Phys. Lett. 58:1.Google Scholar
  35. Schaefer H. F. 1975 J. Chem. Phys. 62:4815.Google Scholar
  36. Tsong T. 1984 Appl. Phys. Lett. 45:1149 andADSCrossRefGoogle Scholar
  37. Tsong T. 1984 Phys. Rev. B 30:4946.ADSCrossRefGoogle Scholar
  38. Tomanek D. and Schluter M. A. 1986 Phys. Rev. Lett. 55:2853.Google Scholar
  39. Whiteside R. A., Krishnan R., Frisch M. J., Pople J. A. and Schleyer von R. P. 1981 Chem. Phys. Lett. 30:547.Google Scholar
  40. Whiteside R. A., Krishnan R., Defrees D. J., Pople J. A. and Schleyer von R. P. 1981 Chem. Phys. Lett. 78:538.Google Scholar
  41. Zavitsanos P. D. and Carlson G. A. 1973 J. Chem. Phys. 59:2966.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • L. S. Ott
    • 1
  • A. K. Ray
    • 1
  1. 1.Department of PhysicsUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations