Local Density Models for Bare and Ligated Transition Metal Clusters

  • D. E. Ellis
  • H. P. Cheng
  • G. F. Holland


Transition metals exhibit interesting and technically useful chemical interactions both among themselves and with other atoms. Their high strength and corrosion resistance makes them essential structural materials, and their chemical reactivity and selectivity give them a central role as catalytic promoters of reactions. These special properties are popularly associated with the presence of a semilocalized, partially occupied nd electronic configuration. However, the nature of the metal-metal bond, and the precise character of electronic interactions associated with cohesion and bonding in the transition metals (TM) has not yet been fully elucidated. In particular, the properties of TM surfaces and small particles (which are essentially all surface) are at present very poorly understood. There are, of course, large scale experimental and theoretical efforts underway to understand and control electronic properties of these materials.


Platinum Atom Occupied Level Valence Bond Theory Uniform Electron Gas12 Binding Energy Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.J. Baerends, D.E. Ellis and P. Ros, Chem. Phys. 2:41 (1973).CrossRefGoogle Scholar
  2. 2.
    A. Rosen, D.E. Ellis, H. Adachi and F.W. Averill, J. Chem. Phys. 65: 3629 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    B. Delley and D.E. Ellis, J. Chem. Phys. 76:1949 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    D.E. Ellis and B. Delley, “Local Density Approximations” in “Quantum Chemistry and Solid State Physics”, ed. by J.P. Dahl and J. Avery Plenum, NY (1984).Google Scholar
  5. 5.
    B. Delley, D.E. Ellis, A.J. Freeman, E.J. Baerends, and D. Post, Phys. Rev. B27:2132 (1983).ADSGoogle Scholar
  6. 6.
    M.M. Goodgame and W.A. Goddard, III, Phys. Rev. Lett. 48:135 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    J. Harris and R.O. Jones, J. Chem. Phys. 70:830 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    P. Joyes and M. Leleyter, J. Phys. B6.–150 (1973).ADSGoogle Scholar
  9. 9.
    M.F. Guest, I.H. Hillier, and C.P. Garner, Chem. Phys. Lett. 48:587 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    B. Delley, A.J. Freeman, and D.E. Ellis, Phys. Rev. Lett. 50:488 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    S.K. Gupta, B.M. Nappi, and K.A. Gingerich, Ame. Chem. Soc. Inorg. Chem. 22:996 (1981).Google Scholar
  12. 12.
    M.S. Daw and M.I. Baskes, Phys. Rev. B29:6443 (1984).ADSGoogle Scholar
  13. 13.
    D.E. Ellis and H.P. Cheng, manuscript in preparation.Google Scholar
  14. 14.
    B. Delley, M.C. Manning, D.E. Ellis, J. Berkowitz, and W.C. Trogler, Inorg. Chem. 21:2247 (1982).CrossRefGoogle Scholar
  15. 15.
    G.F. Holland, D.E. Ellis, and W.C. Trogler, J. Chem. Phys. 83:3504 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    G.F. Holland, D.E. Ellis, and W.C. Trogler, J. Am. Chem. Soc. 108:1884 (1986).CrossRefGoogle Scholar
  17. 17.
    A. Rosen and D.E. Ellis, J. Chem. Phys. 62:3039 (1975);ADSCrossRefGoogle Scholar
  18. 17a.
    D.E. Ellis, J. Phys. B10:1 (1977);ADSGoogle Scholar
  19. 17b.
    D.E. Ellis, in Actinides in Perspective, ed. by N.M. Edelstein, Pergamon, NY (1982)Google Scholar
  20. 17c.
    D.E. Ellis and G.L. Goodman, Intl. J. Quantum Chem. 25:185 (1984);CrossRefGoogle Scholar
  21. 17d.
    D.E. Ellis in Handbook on the Physics and Chemistry of the Actinides, ed. by A.J. Freeman and G.H. Lander, North Holland, Amsterdam (1985).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • D. E. Ellis
    • 1
  • H. P. Cheng
    • 1
  • G. F. Holland
    • 2
  1. 1.Department of Physics and AstronomyMaterials Research CenterUSA
  2. 2.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations