Advertisement

Role of Ensembles in Catalysis by Metals

  • Guy Antonin Martin

Abstract

Among the recent ideas in catalysis by metals, the concept of ensemble appears to be one of the most promising. According to this view the active site is considered as a 2 × D cluster, whose size varies with the reaction considered, in a metallic environment. This model originates from Group VIII-IB alloys experiments, where an active element is diluted in an inactive IB matrix, from kinetics data and from adsorption experiments where the magnetic properties of metals are measured. This is illustrated by Ni and Ni-Cu catalysts and reactions including hydrogenation of benzene, D2-hydrocarbon exchange reaction and hydrogenolysis. The ensemble model allows a description of rates which is quantitative over a wide range of experimental conditions using only one adjustable parameter, which can be identified to the nuclearity (number of atoms) of the ensemble, associated with an energetic term. This model yields a quantitative description, with the very same remarkable few number of adjustable parameters, of apparently different aspects of catalysis such as size-sensitivity and poisoning. Finally, the field of application, the limit and the future of the ensemble model are tentatively outlined.

Keywords

Metal Atom Apparent Activation Energy Landing Site Ensemble Model Bond Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chem. Eng. News, Feb. 17 (1986).Google Scholar
  2. 2.
    M. Boudart, “Proc. Sixth Int. Cong. Catalysis”, G. C. Bond et al., ed., The Chemical Society, London, (1976), p. 1.Google Scholar
  3. 3.
    J. H. Sinfelt, J. L. Carter, and D. C. Yates, J. Catalysis 24:283 (1972).CrossRefGoogle Scholar
  4. 4.
    V. Ponec and W. M. H. Sachtler, J. Catalysis 24:250 (1972).CrossRefGoogle Scholar
  5. 5.
    R. Burch, Acc. Chem. Res. 15:24 (1982).CrossRefGoogle Scholar
  6. 6.
    G. A. Somorjai, “Proc. 8th Int. Cong. Catalysis”, Verlag Chemie (1984), p. 1–113.Google Scholar
  7. 7.
    W. M. H. Sachtler, “Proc. 8th Int. Cong. Catalysis”, Verlag Chemie (1984), p. 1–151.Google Scholar
  8. 8.
    A. A. Balandin, Z. Phys. Chem. 132:289 (1929).Google Scholar
  9. 9.
    Y. Soma-Noto and W. M. H. Sachtler, J. Catalysis 34:162 (1974).CrossRefGoogle Scholar
  10. 10.
    D. A. Dowden, “Proc. 5th Int. Cong. Catalysis”, Amsterdam (1972), p. 621.Google Scholar
  11. 11.
    J. A. Dalmon, M. Primet, and G. A. Martin, Surf. Sci. 50:95 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    A. Frennet, G. Liennard, A. Grucq, and L. Degols, J. Catalysis 53:150 (1978);CrossRefGoogle Scholar
  13. 12a.
    A. Frennet, G. Liennard, A. Grucq, and L. Degols, Surf. Sci. 80:419 (1979).CrossRefGoogle Scholar
  14. 13.
    P. W. Selwood, “Chemisorption and Magnetization”, Academic Press, N.Y. (1975).Google Scholar
  15. 14.
    J. A. Dalmon, J. P. Candy, and G. A. Martin, “Proc. Sixth Int. Cong. Catalysis”, G. C. Bond et al., ed., The Chemical Society, London (1976), p. 903.Google Scholar
  16. 15.
    See e.g. H. Conrad, G. Ertl, J. Küppers, and E. E. Latta, Surf.Sci. 58:578 (1976).ADSCrossRefGoogle Scholar
  17. 16.
    M. C. Desjonqueres and F. Cyrot-Lackmann, Surf. Sci. 80:208 (1979).ADSCrossRefGoogle Scholar
  18. 17.
    J. J. Prinsloo and P. C. Gravelle, J.C.S. Faraday I 76:2221 (1980).CrossRefGoogle Scholar
  19. 18.
    J. A. Dalmon, G. A. Martin, and B. Imelik, Japanese J. Appl. Phys. 2:261 (1974).Google Scholar
  20. 19.
    J. A. Dalmon and G. A. Martin, J. Catalysis 66:214 (1980).CrossRefGoogle Scholar
  21. 20.
    G. A. Martin, J. Catalysis 60:345 (1979).CrossRefGoogle Scholar
  22. 21.
    C. Mirodatos, J. A. Dalmon, and G. A. Martin, J. Catalysis, in press (1986).Google Scholar
  23. 22.
    H. F. Leach, C. Mirodatos, and D. C. Whan, J. Catalysis 63:138 (1980).CrossRefGoogle Scholar
  24. 23.
    M. F. Guilleux, J. A. Dalmon, and G. A. Martin, J. Catalysis 63:138 (1980).CrossRefGoogle Scholar
  25. 24.
    M. Temkin, Acta Physicochimica Soviet Union 3:313 (1935).Google Scholar
  26. 25.
    G. A. Martin, J. A. Dalmon, and C. Mirodatos, “Proc. 8th Int. Cong. Catalysis”, Verlag Chemie, Berlin (1984), p. IV–371.Google Scholar
  27. 26.
    E. Miyazaki and I. Yasumori, J. Math. Phys. 18:215 (1977).ADSCrossRefGoogle Scholar
  28. 27.
    G. A. Martin, Surf. Sci. 162:316 (1985).ADSCrossRefGoogle Scholar
  29. 28.
    M. V. Mathieu and M. Primet, Surf. Sci. 58:511 (1976).ADSCrossRefGoogle Scholar
  30. 29.
    J. A. Dalmon and G. A. Martin, “Proc. 7th Int. Cong. Catalysis”, Kodansha ed., Tokyo (1981), p. 402.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Guy Antonin Martin
    • 1
  1. 1.Institut de Recherches sur la CatalyseVilleurbanne, CédexFrance

Personalised recommendations