Reactivity of Size-Selected Silicon Clusters as Studied by Fourier Transform Mass Spectrometry

  • M. L. Mandich
  • W. D. ReentsJr.
  • V. E. Bondybey


The chemistry of positively and negatively charged bare silicon cluster ions is investigated using laser evaporation coupled with Fourier transform ion cyclotron resonance mass spectrometry. Systematic trends in the rates and products with cluster size indicate that small ionic silicon clusters have two distinct types of reactivity. These two types are related to different dangling bonds of the clusters involving either a divalent or a trivalent (or charged) silicon center. This interpretation agrees well with ab initio electronic structure calculations as well as known reactivity of divalent and radical organosilicon centers. “Magic numbers” and reaction thermodynamics are of little heuristic value in explaining these trends in the reaction rates and product distributions.


Cluster Size Product Distribution Magic Number Laser Evaporation Silicon Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. L. Mandich, W. D. Reents, Jr. and V. E. Bondybey, J. Phys. Chem., 90:2315 (1986).CrossRefGoogle Scholar
  2. 2.
    V. E. Bondybey, W. D. Reents, Jr., and M. L. Mandich, submitted to Chem. Phys. Lett. Google Scholar
  3. 3.
    Another study of silicon cluster cation reactions has recently been reported by W. R. Creasy, S. W. McElvany, and A. O’Keefe, Proc. of the 34Th Ann. Conf. on Mass Spectrom. and Allied Topics, June 9–13, 1986.Google Scholar
  4. 4.
    M. L. Mandich, V. E. Bondybey, and W. D. Reents, Jr., submitted to J. Chem. Phys.Google Scholar
  5. 5.
    W. D. Reents, Jr., M. L. Mandich, and V. E. Bondybey, to be published in Chem. Phys. Lett.Google Scholar
  6. 6.
    W. D. Reents, Jr. A. M. Mujsce, V. E. Bondybey and M. L. Mandich, submitted to J. Chem. Phys.Google Scholar
  7. 7.
    T. Su and M. T. Bowers, in Gas Phase Ion Chemistry, Vol. 1, M. T. Bowers, ed., Academic Press, New York, 1979.Google Scholar
  8. 8.
    See, for example, L. A. Bloomfield, M. E. Geusic, R. R. Freeman, and W. L. Brown, Chem. Phys. Lett., 121:33 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    L. A. Bloomfield, R. R. Freeman, and W. L. Brown, Phys. Rev. Lett., 54:2246 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    W. Begemann, K. H. Meiwes-Broer, and H. O. Lutz, Phys. Rev. Lett., 56:2248 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    K. Raghavachari and V. Logovinsky, Phys. Rev. Lett., 55:2853 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    R. D. Levin and S. B. Lias, National Stand. Ref. Data Ser., Nat. Bur. Stand., Washington D. C., 1982.Google Scholar
  13. 13.
    Y. Tang, in Reactive Intermediates, Vol. 2, R. A. Abramovitch, ed., Plenum Press, New York,1982.Google Scholar
  14. 14.
    J. Wilt, in Reactive Intermediates, Vol. 3, R. A. Abramovitch, ed., Plenum Press, New York, 1983.Google Scholar
  15. 15.
    D. Tomanek and M. A. Schluter, Phys. Rev. Lett. 56:1055 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    G. Pacchioni and J. Koutecky, J. Chem. Phys. 84:3301 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • M. L. Mandich
    • 1
  • W. D. ReentsJr.
    • 1
  • V. E. Bondybey
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations