Infrared Matrix-Investigations of the Interaction of Oxygen with Iron Atoms and Aggregates

  • Ulrich L. Kettler
  • Paul H. Barrett
  • Ralph G. Pearson


We report on infrared absorption investigations of the reactivity of Fe n (n=1,2,...) with molecular oxygen in low temperature argon matrices. Besides the known ν o-o IR hne of iron peroxide Fe(O2)1 at 956 cm-1 we observe that the band at ≈873 cm-1 which has been reported for FeO2,3 becomes strong at higher iron concentrations. So far the occurrence of FeO has only been reported when atomic oxygen is formed in the device or at the matrix surface, e. g. by the reaction of O2 with excited rare-gas atoms from a hollow-cathode discharge. In this case also O3 lines have been reported. As we see no O3 lines, it is believed that Fe2 is capable of O-O bond rupture resulting in a reaction product of 2 FeO. — A new band grows at moderate iron concentration at the expense of Fe(O2). It is assigned to the ν o-o mode of a FeO2Fe molecule. A band at 1098 cm-1 is attributed to Fe(O2)2.


Iron Concentration Iron Atom Bond Rupture Matrix Surface High Iron Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, S., Blyholder, G., Fernandez, J., Inorg. Chem. 20, 2813 (1981)CrossRefGoogle Scholar
  2. 2.
    Abramowitz, S., Acquista, N., Levin, I. W., Chem. Phys. Lett. 50, 423 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    Green, D. W., Reedy, G. T., J. Mol. Spectrosc. 78, 257 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    Valentine, J. S., Chem. Rev. 73, 235 (1973)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dunn, J. B. R., Shriver, D. F., Klotz, I. M., Biochemistry 14, 2689 (1975)CrossRefGoogle Scholar
  6. 6.
    Collman, J. P., Gange, R. R., Reed, C. A., Haibert, T. R., Lang, G., Robinson, W. T., J. Am. Chem. Soc. 97, 1427 (1975)CrossRefGoogle Scholar
  7. 7.
    Kurtz, Jr., D. M., Shriver, D. F., Klotz, I. M., J. Am. Chem. Soc. 98, 5033 (1976)CrossRefGoogle Scholar
  8. 8.
    Barrow, R. F., Senior, M., Nature (London) 223, 1359 (1969);ADSCrossRefGoogle Scholar
  9. 8a.
    West, J. B., Broida, H. P., J. Chem. Phys. 62, 2566 (1975)ADSCrossRefGoogle Scholar
  10. 9.
    Ozin, G. A., Mitchell, S. A., Garcia-Prieto, J., J. Am. Chem. Soc. 105, 6399 (1983)CrossRefGoogle Scholar
  11. 10.
    Klabunde, K. J., Chemistry of Free Atoms and Particles, Academic Press, New York (1980) (and references therein)Google Scholar
  12. 11.
    Peden, C. H. F., Parker, S. F., Barrett, P. H., Pearson, R. G., J. Phys. Chem. 87, 2329 (1983)CrossRefGoogle Scholar
  13. 12.
    Andrews, L., Spiker, Jr., R. C., J. Phys. Chem. 76, 3208 (1972)CrossRefGoogle Scholar
  14. 13.
    White, D., Seshadri, K. S., Dever, D. F., Mann, D. E., Linevsky, M. J., J. Chem. Phys. 39, 2463 (1963);ADSCrossRefGoogle Scholar
  15. 13a.
    Seshadri, K. S., White, D., Mann, D. E., J. Chem. Phys. 45, 4697 (1966);ADSCrossRefGoogle Scholar
  16. 13b.
    Andrews, L., J. Chem. Phys. 50, 4288 (1969)ADSCrossRefGoogle Scholar
  17. 14.
    Anderson, J. S., Ogden, J. S., Ricks, M. J., Chem. Commun., 1585 (1968);Google Scholar
  18. 14a.
    Anderson, J. S., Ogden, J. S., J. Chem. Phys. 51, 4189 (1969)ADSCrossRefGoogle Scholar
  19. 15.
    Andrews, L., J. Phys. Chem. 73, 3922 (1969)CrossRefGoogle Scholar
  20. 16.
    Gingerich, K. A., Symp. Faraday Soc. 14, 109 (1980)CrossRefGoogle Scholar
  21. 17.
    Smoes, S., Drowart, J., High Temp. Sci. 17, 31 (1984)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Ulrich L. Kettler
    • 1
  • Paul H. Barrett
    • 1
  • Ralph G. Pearson
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of ChemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations