Advertisement

Physical Properties of High-Nuclearity Metal Cluster Compounds

  • L. J. de Jongh
  • H. B. Brom
  • G. Longoni
  • P. R. Nugteren
  • B. J. Pronk
  • G. Schmid
  • H. H. A. Smit
  • M. P. J. van Staveren
  • R. C. Thiel

Abstract

Polynuclear metal cluster compounds provide an interesting class of model systems for small metal particles with chemisorbed molecules. They are composed of large macromolecules consisting of a metal core of a certain number (n) of metal atoms, to which core a “shell” of ligands is coordinated. In fig. 1 the carbonyl cluster [Ni38Pt6(CO)48H]5- is shown as an example. In going from compound to compound the type of metal atom can be varied, as well as the number n of atoms in the metal core. For Au, Pt, Ru and Rh, the maximum value of n reached at this moment is already n = 55, namely in A;u55(PPh3)12Cl6 (fig. 2) and related Pt, Ru and Rh cluster compounds. For Pd a metal core as large as n = 570 has recently been reported3. The advantages of these materials for fundamental research in small metal particle physics are clearly: (i) complete homogeneity of the metal cluster size in each sample; (ii) possibility to study the properties as a function of cluster size by comparing compounds with different n; (iii) availability of macroscopically large (0,01 – 10 g) samples for a variety of physical experiments.

Keywords

Metal Cluster Metal Core AU55 Cluster Cluster Compound Carbonyl Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ceriotti, F. Demartin, G. Longoni, M. Manassero, M. Marchionna, G. Piro and M. Sansoni, Angew. Chem. 24:697 (1985).CrossRefGoogle Scholar
  2. 2.
    See e. g. G. Schmid in “@@@@@Structure and Bonding” 62: 52, Springer Verlag, Berlin Heidelberg (1985).Google Scholar
  3. 3.
    M. N. Vargaftik, V. P. Zagorodnikov, I. P. Stolyarov, I. I. Moiseev, V. A. Likholobov, D. I. Kochubey, A. L. Chuvilin, V. I. Zaikovsky, K. I. Zamaraev, and G. I. Timofeeva, J. Chem. Soc. Chem. Commun., 937 (1985).Google Scholar
  4. 4.
    For recent reviews see e. g. W. Halperin, Rev. Mod. Phys. 58:533–606 (1986)ADSCrossRefGoogle Scholar
  5. 4a.
    or J. A. A. J. Perenboom, P. Wijder, and F. Meier, Phys. Rep. 78: 173 (1981).ADSCrossRefGoogle Scholar
  6. 5.
    M. P. J. van Staveren, H. B. Brom, L. J. de Jongh and G. Schmid, Solid State Commun. 60: 319 (1986).CrossRefGoogle Scholar
  7. 6.
    P. Nédallec, A. Traverse, L. Dumoulin, H. Bernas, L. Amaral and G. Deutscher, Europhys. Lett. 2:465 (1986).ADSCrossRefGoogle Scholar
  8. 7.
    T. Holstein, Ann. Phys. 8:325 and 343 (1959);ADSCrossRefMATHGoogle Scholar
  9. 7a.
    I. G. Austin and N. F. Mott, Adv. Phys. 18:41 (1969).ADSCrossRefGoogle Scholar
  10. 8.
    K. Y. Wong and P. N. Schatz, Progr. Inorg. Chem. 28:369 (1981).CrossRefGoogle Scholar
  11. 9.
    G. Schmid, R. Pfeil, R. Boese, F. Bandermann, S. Meyer, G. H. M. Calis and J. W. A. van der Velden, Chem. Ber. 114: 3634 (1981).CrossRefGoogle Scholar
  12. 10.
    B. J. Pronk, H. B. Brom, L. J. de Jongh, G. Longoni and A. Ceriotti, Solid State Commun. 59:349 (1986).ADSCrossRefGoogle Scholar
  13. 11.
    B. K. Teo, F. J. Disalvo, J. W. Waszczak, G. Longoni and A. Ceriotti, Inorg. Chem. 25:2262 (1986).CrossRefGoogle Scholar
  14. 12.
    D. R. Salahub and F. Raatz, Int. J. Quantum Chem. S18:173 (1984);CrossRefGoogle Scholar
  15. 12a.
    D. R. Salahub and F. Raatz, Surface Science 146:L609 (1984).Google Scholar
  16. 13.
    G. F. Holland, D. E. Ellis, and W. C. Trogler, J. Chem. Phys. 83:3507 (1985).ADSCrossRefGoogle Scholar
  17. 14.
    L. J. de Jongh, Int. Conf. on Molecules, Clusters and Networks in the Solid State, Birmingham, July 1986.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • L. J. de Jongh
    • 1
  • H. B. Brom
    • 1
  • G. Longoni
    • 2
  • P. R. Nugteren
    • 1
  • B. J. Pronk
    • 1
  • G. Schmid
    • 3
  • H. H. A. Smit
    • 1
  • M. P. J. van Staveren
    • 1
  • R. C. Thiel
    • 1
  1. 1.Kamerlingh Onnes LaboratoriumRijksuniversiteit LeidenNederland
  2. 2.Chimica Inorganica e MetallorganicaUniversitá degli studi MilanoItalia
  3. 3.Anorganische ChemieUniversität EssenW-Deutschland

Personalised recommendations