Reactions of Diatomic and Triatomic Metal Clusters of Iron and Copper with Dihydrogen in Inert Matrices

  • R. H. Hauge
  • Z. H. Kafafi
  • J. L. Magrave


Diatomic copper was found to react successively with up to three dihydrogen molecules to form Cu2H2, Cu2H4 and Cu2H6, respectively, on an inert matrix surface at 12–15K. Diatomic iron was found to be totally unreactive. Triatomic copper was observed to react spontaneously with molecular hydrogen. Dihydrogen complexes were observed for Cu2H4, Cu2H6 and Cu3H2 species. A reaction of molecular hydrogen with Fex where x is 3 or 4 was also observed.


Molecular Hydrogen Copper Cluster System Hydrogen Tantalum Foil FTIR Absorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini, and H. J. Wasserman, J. Am. Chem. Soc. 106, 451 (1984).CrossRefGoogle Scholar
  2. 2.
    R. L. Sweany, J. Am. Chem. Soc. 107, 2374 (1985);CrossRefGoogle Scholar
  3. 2a.
    R. L. Sweany, Organometallics 5, 387 (1986).CrossRefGoogle Scholar
  4. 3.
    R. K. Upmacis, G. E. Gadd, M. Poliakoff, M. B. Simpson, J. J. Turner, R. Whyman, and A. F. Simpson, J. Chem. Soc, Chem. Commun., 27 (1985).Google Scholar
  5. 4.
    S. P. Church, F. W. Grevels, H. Hermann, K. Schaffner, J. Chem. Soc, Chem. Commun. 30 (1985).Google Scholar
  6. 5.
    R. H. Morris, J. F. Sawyer, M. Shirolian, J. D. Zubkowski, J. Am. Chem. Soc. 107 5581 (1985).CrossRefGoogle Scholar
  7. 6.
    G. J. Kubas, C. J. Unkefer, B. I. Swanson, and E. Fukushima, J. Am. Chem. Soc, 108, 7000 (1986).CrossRefGoogle Scholar
  8. 7.
    G. A. Ozin and J. Garcia-Prieto, J. Am. Chem. Soc. 108, 3099 (1986).CrossRefGoogle Scholar
  9. 8.
    R. K. Upmacis, M. Poliakoff and J. J. Turner, J. Am. Chem. Soc. 108, 3645 (1986).CrossRefGoogle Scholar
  10. 9.
    R. H. Crabtree, M. Lavin, L. J. Bonneviot, J. Am. Chem. Soc. 108, 4032 (1986).CrossRefGoogle Scholar
  11. 10.
    H. D. Kaesz and R. B. Saillant, Chem Reviews, Vol. 72, 231 (1972).CrossRefGoogle Scholar
  12. 11.
    D. S. Moore and S. D. Robinson, Chem. Soc. Rev. 12, 415 (1983).CrossRefGoogle Scholar
  13. 12.
    G. A. Ozin and C Gracie, J. Phys. Chem. 88, 643, (1984);CrossRefGoogle Scholar
  14. 12a.
    G. A. Ozin and J. G. McCaffrey, J. Phys. Chem. 88, 645 (1984).CrossRefGoogle Scholar
  15. 13.
    G. A. Ozin and J. C. McCaffrey, J. Am. Chem. Soc. 106, 807 (1984).CrossRefGoogle Scholar
  16. 14.
    R. L. Rubinovitz and E. R. Nixon, J. Phys. Chem. 90, 1940 (1986).CrossRefGoogle Scholar
  17. 15.
    M. D. Morse, M. E. Geusic, J. R. Heath, and R. E. Smalley, J. Chem. Phys. 83, 2293 (1985).ADSCrossRefGoogle Scholar
  18. 16.
    S. C. Richtsmeier, K. E. Parkas, A. Kiu, L. G. Pobo and S. J. Riley, J. Chem. Phys. 82, 3659 (1985).ADSCrossRefGoogle Scholar
  19. 17.
    R. L. Whetten, D. M. Cox, D. J. Trevor and A Kaldor, Phys. Rev. Letters 54, 1494 (1985).ADSCrossRefGoogle Scholar
  20. 18.
    R. H. Hauge, L. Fredin, Z. H Kafafi and J. L. Margrave, Appl. Spectrosc. 40, 588 (1986).ADSCrossRefGoogle Scholar
  21. 19.
    J. W. Kauffman, R. H. Hauge and J. L. Margrave, J. Phys. Chem. 89, 3541 (1985).CrossRefGoogle Scholar
  22. 20.
    G. A. Ozin, H. Huber, D. Mcintosh, S. Mitchell, J. G. Norman Jr., and L. Noodleman, J. Am. Chem. Soc. 101, 3504 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. H. Hauge
    • 1
  • Z. H. Kafafi
    • 1
  • J. L. Magrave
    • 1
  1. 1.Rice Quantum Institute & Department of ChemistryRice UniversityHoustonUSA

Personalised recommendations