Advertisement

Activation and Chemisorption of Hydrogen on Aluminum Clusters

  • T. H. Upton
  • D. M. Cox
  • A. Kaldor

Abstract

We present results from theoretical and experimental investigations of the chemical (H2 activation) and electronic properties (ionization potentials) of aluminum clusters. The chemisorption of H2 on aluminum clusters exhibits a remarkable sensitivity to the number of metal atoms in the cluster. Al6 is the smallest cluster for which chemisorption of H2 is observed experimentally and for which a stable dissociately chemisorbed state for H2 is predicted. For clusters containing more than 6 atoms, the reactivity decreases rapidly with increasing cluster size. For the bare aluminum clusters, theoretical predictions and experimental measurements of ionization thresholds are in good agreement. Using the reactive Al6 cluster as model, we discuss how electronic factors influence H2 dissociative chemisorption on metals. We find that while charge transfer from the cluster to the H2 antibonding orbital is important, the activation barrier is dominated by repulsive interactions between the H2 and the cluster. The charge state of the cluster (anion, neutral or cation) has only a small effect on the activation barrier, which suggests that similar size selectivity might be expected for charged and neutral clusters.

Keywords

Activation Barrier Dissociative Adsorption Ionization Threshold Hydrogen Chemisorption Increase Cluster Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1(a).
    For H2 chemisorption on transition metal clusters see (a) R. L. Whetten, D. M. Cox, D. J. Trevor, and A. Kaldor, Phys. Rev. Lett. 54, 1494 (1985).ADSCrossRefGoogle Scholar
  2. 1(b).
    S. C. Richtsmeier, E. K. Parks, K. Liu, G. Pobo, and S. J. Riley, J. Chem. Phys. 82, 3659 (1985).ADSCrossRefGoogle Scholar
  3. 1(c).
    M. D. Morse, M. E. Geusic, J. R. Heath, and R. E. Smalley, J. Chem. Phys. 83, 2293 (1985).ADSCrossRefGoogle Scholar
  4. 1(d).
    D. M. Cox, R. L. Whetten, M. R. Zakin, D. J. Trevor, K. C. Reichmann, and A. Kaldor, AIP Conference Proceedings No. 146, Adv. in Laser Science-I, Nov. 1985, Eds. W. C. Stwalley and M. Lapp, AIP, New York (1986).Google Scholar
  5. 1(e).
    M. E. Geusic, M. D. Morse, and R. E. Smalley, J. Chem. Phys. 82, 590 (1985).ADSCrossRefGoogle Scholar
  6. 2.
    R. L. Whetten, M. R. Zakin, D. M. Cox, D. J. Trevor and A. Kaldor, J. Chem. Phys. 85, 1697 (1986).ADSCrossRefGoogle Scholar
  7. 3.
    D. M. Cox, R. L. Whetten, D. J. Trevor, and A. Kaldor, to be published.Google Scholar
  8. 4.
    T. H. Upton, Phys. Rev. Lett. 56, 2168 (1986).ADSCrossRefGoogle Scholar
  9. 5(a).
    For example see (a) T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, J. Chem. Phys. 74, 6511 (1981).ADSCrossRefGoogle Scholar
  10. 5(b).
    D. L. Michalopoulos, M. E. Guesic, S. G. Hansen, D. E. Powers, and R. E. Smalley, J. Phys. Chem. 86, 2556 (1982).CrossRefGoogle Scholar
  11. 5(c).
    V. E. Bondybey, J. Phys. Chem. 86, 3396 (1982).CrossRefGoogle Scholar
  12. 5(d).
    E. A. Rohlfing, D. M. Cox and A. Kaldor, Chem. Phys. Lett. 99, 161 (1983).ADSCrossRefGoogle Scholar
  13. 5(e).
    A. Rohlfing, D. M. Cox, and A. Kaldor, J. Phys. Chem. 88, 4497. (1984).CrossRefGoogle Scholar
  14. 6.
    C. E. Moore, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), NSRDS-NBS 35 (1971).Google Scholar
  15. 7.
    E. A. Rohlfing, D. M. Cox, A. Kaldor and K. H. Johnson, J. Chem. Phys. 81, 3846 (1984).ADSCrossRefGoogle Scholar
  16. 8(a).
    R. L. Whetten, D. M. Cox, D. J. Trevor, and A. Kaldor, J. Phys. Chem. 89, 566 (1985).CrossRefGoogle Scholar
  17. 8(b).
    M. E. Geusic, M. D. Morse, S. C. O’Brien, and R. E. Smalley, Rev. Sci. Instr. 56, 2123 (1985).ADSCrossRefGoogle Scholar
  18. 9.
    D. M. Cox, K. C. Reichmann, D. J. Trevor, and A. Kaldor, submitted for publication.Google Scholar
  19. 10.
    Clusters containing an odd (as well as an even) number of D atoms are produced when deuterium is added to the carrier gas because deuterium is also decomposed in the vaporization region producing the highly reactive atomic species. Such effects have been observed on iron clusters (E. K. Parks, K. Liu, S. C. Richtsmeier, L. G. Pobo, and S. J. Riley, J. Chem. Phys. 82, 5470 (1985).ADSCrossRefGoogle Scholar
  20. 11.
    H. Partridge and C. W. Bauschlicher, J. Chem. Phys. 84, 6507 (1986).ADSCrossRefGoogle Scholar
  21. 12(a).
    B. K. Rao, P. Jena, and M. Manninen, Phys. Rev. Lett. 53, 2300 (1984).ADSCrossRefGoogle Scholar
  22. 12(b).
    C. W. Bauschlicher, Chem. Phys. Lett. 117, 33 (1985).ADSCrossRefGoogle Scholar
  23. 13(a).
    see for example (a) T. H. Upton and W. A. Goddard III, Phys. Rev. Lett. 42, 472 (1979).ADSCrossRefGoogle Scholar
  24. 13(b).
    S. G. Louie, Phys. Rev. Lett. 42, 476 (1979).ADSCrossRefGoogle Scholar
  25. 13(c).
    C. Umrigar and J. W. Wilkins, Phys. Rev. Lett. 54, 1551 (1985).ADSCrossRefGoogle Scholar
  26. 13(d).
    P. Nordlander, S. Holloway, and J. K. Norskov, Surf. Sci. 136, 59 (1984).ADSCrossRefGoogle Scholar
  27. 13(e).
    H. Nakatsuji and M. Hada, J. Amer. Chem. Soc. 107, 8264 (1985).CrossRefGoogle Scholar
  28. 13(f).
    J. Garcia-Prieto, M. E. Ruiz, and O. Novaro, J. Amer. Chem. Soc. 107, 5635 (1985).CrossRefGoogle Scholar
  29. 13(g).
    H. O. Beckmann and J. Koutecky, Surf. Sci. 120, 127 (1982).ADSCrossRefGoogle Scholar
  30. 13(h).
    P. Cremaschi and J. L. Whitten, Phys. Rev, Lett. 46, 1242 (1981).ADSCrossRefGoogle Scholar
  31. 14.
    T. H. Upton, J. Chem. Phys., submitted, and references within.Google Scholar
  32. 15.
    W. Knight, K. Clemenger, W de Heer, W. Saunders, M.-Y. Chou, and M. Cohen, Phys. Rev. Lett. 52, 2141 (1984).ADSCrossRefGoogle Scholar
  33. 16(a).
    C. F. Melius, Chem. Phys. Lett. 39, 287 (1976).ADSCrossRefGoogle Scholar
  34. 16(b).
    J. H. McCreery and G. Wolken, Jr., J. Chem. Phys. 64, 2845 (1976).ADSCrossRefGoogle Scholar
  35. 16(c).
    V. I. Avdeev, T. H. Upton, W. H. Weinberg, and W. A. Goddard III, Surf. Sci. 95, 391 (1980).ADSCrossRefGoogle Scholar
  36. 16(d).
    A. Gelb and M. J. Cardillo, Surf. Sci. 64, 197 (1977).ADSCrossRefGoogle Scholar
  37. 17.
    J. Harris and S. Andersson, Phys. Rev. Lett. 55, 1583 (1985).ADSCrossRefGoogle Scholar
  38. 18(a).
    T. H. Upton, J. Amer. Chem. Soc. 106, 1561 (1984).CrossRefGoogle Scholar
  39. 18(b).
    A. K. Rappé and T. H. Upton, J. Amer. Chem. Soc. 107, 1206 (1985).CrossRefGoogle Scholar
  40. 19.
    P. E. M. Siegbahn, M. R. A. Blomberg, and C. W. Bauschlicher, J. Chem. Phys. 81, 2103 (1984).ADSCrossRefGoogle Scholar
  41. 20(a).
    S. Holloway and J. W. Gadzuk, J. Chem. Phys. 82, 5203 (1985).ADSCrossRefGoogle Scholar
  42. 20(b).
    J. W. Gadzuk and S. Holloway, Chem. Phys. Lett. 114, 314 (1985).ADSCrossRefGoogle Scholar
  43. 20(c).
    D. K. Bhattacharyya, J.-T. Lin, and T. F. George, Surf. Sci. 116, 423 (1982).ADSCrossRefGoogle Scholar
  44. 21(a).
    E. Shustorovich, J. Phys. Chem. 87, 14 (1983).CrossRefGoogle Scholar
  45. 21(b).
    E. Shustorovich and R. C. Baetzold, Science 227, 876 (1985).ADSCrossRefGoogle Scholar
  46. 21(c).
    E. Shustorovich, R. C. Baetzold, and E. L. Muetterties, J. Phys. Chem. 87, 1100 (1983).CrossRefGoogle Scholar
  47. 22.
    C.-Y. Lee and A. E. DePristo, J. Chem. Phys. 84, 485 (1986);ADSCrossRefGoogle Scholar
  48. 22a.
    C.-Y. Lee and A. E. DePristo, J. Chem. Phys. 85, 4161 (1985).ADSCrossRefGoogle Scholar
  49. 23.
    this conclusion is the result of simple geometric arguments that are specific to nd orbitals. It is possible that less severe criteria are appropriate for other orbital symmetries or types.Google Scholar
  50. 24.
    A. K. Rappé and T. H. Upton, J. Chem. Phys. 85, 4400 (1986).ADSCrossRefGoogle Scholar
  51. 25.
    E. Shustorovich, Surf. Sci. 150, L115 (1985).ADSCrossRefGoogle Scholar
  52. 26.
    in fact the occupation is best described as (λ1a1 2- λ2b2 2)(αβ-βα) where λ 1 > λ 2.Google Scholar
  53. 27.
    obtained by following the ‘steepest descent’ path from the transition state the initial and final states.Google Scholar
  54. 28.
    because of the large number of calculations required for this study, the basis set employed was more limited than in the study of Aln and AlnH2 (see refs. 4,12). The Al basis was reduced to (3s,2p) and the H basis to (2s), with all other procedures remaining the same. This basis will have a limited ability to describe the polarization effects present in this system.Google Scholar
  55. 29(a).
    J. M. Alford, F. D. Weiss, R. T. Laaksonen, and R. E. Smalley, J. Phys. Chem. 90, 4480 (1986).CrossRefGoogle Scholar
  56. 29(b).
    P. J. Brucat, C. L. Pettiette, S. Yang, L.-S. Zheng, M. J. Craycraft, and R. E. Smalley, J. Chem. Phys. 85, 4747 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • T. H. Upton
    • 1
  • D. M. Cox
    • 1
  • A. Kaldor
    • 1
  1. 1.Corporate Research Science LaboratoriesExxon Research and Engineering CompanyAnnandaleUSA

Personalised recommendations