Structures of C5 and C6

  • David W. Ewing
  • Gary V. Pfeiffer


Recent experiments involving laser vaporization of graphite, followed by supersonic expansion, 1–4 have rekindled interest in the structures of small carbon clusters. While theoretical calculations have firmly established the structure(s) of 04, 5–8 relatively little theoretical work has thusfar been reported for C5 and C5, most such studies being small model calculations on diamond and graphite. There has been, however, a MINDO/2 geometry search on small carbon clusters which included C5 and C6 9. in that work C5 was found to be trigonal bipyramidal, and C5 was found to be a distorted octahedron of C2V symmetry. The available experimental data, from matrix isolation studies, indicate that C5 and C5 are linear.10–11


Trigonal Bipyramidal Stable Isomer Distorted Octahedron Total Electronic Energy Core Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Rohlfing, D. M. Cox and A. Kaldor, J. Chem. Phys. 81, 3322 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    L. A. Bloomfield, R. R. Freeman and W. L. Brown, Phys. Rev. Lett. 54, 2246 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    L. A. Bloomfield, M. E. Geusic, R. R. Freeman and W. L. Brown, Chem. Phys. Lett. 121, 33 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    M. E. Geusic, T. J. Mcllrath, M. F. Jarrold, L. A. Bloomfield, R. R. Freeman and W. L. Brown, J. Chem. Phys. 84, 2421 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    R. A. Whiteside, R. Krishnan, D. J. Defrees, J. A. Pople and P. von R. Schleyer, Chem. Phys. Lett. 78, 538 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    A. V. Nemukhin, A. I. Demeat’ev, A. I. Kolesnikov, N. F. Stepanov and V. I. Polyakov, Teor. Eksp. Khim. 19, 715 (1983).Google Scholar
  7. 7.
    Z. Z. Wang, R. N. Diffenderfer and I. Shavitt, Paper presented at 39th Symposium on Molecular Spectroscopy (Ohio State University, (1984).Google Scholar
  8. 8.
    D. H. Magers, R. J. Harrison, and R. J. Bartlett, J. Chem. Phys. 84, 3284 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    Z. Slanina and R. Zahradnik, J. Phys. Chem. 81, 2252 (1977).CrossRefGoogle Scholar
  10. 10.
    K. R. Thompson, R. L. DeKock, and W. Weltner, Jr., J. Am. Chem. Soc. 93, 4688 (1971).CrossRefGoogle Scholar
  11. 11.
    W. Kratschmer, N. Sorg and D. R. Huffman, Surf. Sci. 156, 814 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    J. S. Binkley, M. J. Frisch, D. J. DeFrees, K. Raghavachari, R. A. Whiteside, H. B. Schelgel, E. M. Fluder and J. A. Pople, Department of Chemistry, Carnegie-Mellon University.Google Scholar
  13. 13.
    T. H. Dunning, Jr., J. Chem. Phys. 53, 2823 (1970).ADSCrossRefGoogle Scholar
  14. 14.
    D. W. Ewing, Ph.D. Thesis, Ohio University (1985).Google Scholar
  15. 15.
    D. W. Ewing and G. V. Pfeiffer, Chem. Phys. Lett. 86, 365 (1982).ADSCrossRefGoogle Scholar
  16. 16.
    K. Raghavachari, J. Chem. Phys. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • David W. Ewing
    • 1
    • 2
  • Gary V. Pfeiffer
    • 1
    • 2
  1. 1.Department of ChemistryJohn Carroll UniversityClevelandUSA
  2. 2.Department of ChemistryOhio UniversityAthensUSA

Personalised recommendations