Lipids and Myelination

  • R. M. Gould
  • W. Spivack
  • R. Cataneo
  • J. Holshek
  • G. Konat
Part of the NATO ASI Series book series (NSSA, volume 142)


In the spirit of a workshop, I will discuss possibilities of there being two independent mechanisms for the entry of lipids into the myelin sheath. These proposed mechanisms would work separately, though not necessarily independently, to deploy different lipids in the cytoplasmic and external sides, respectively, of the ‘asymmetric’ bilayer membrane. Before elaborating on these mechanisms, I will discuss pertinent material under six topics: (1) need for myelin, (2) myelin lipid composition, (3) dynamics of myelin lipids, (4) metabolism of sphingomyelin, ethanolamine plasmalogen, phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, (5) cholesterol metabolism and (6) glycolipid metabolism. The strategies used to provide myelin with the abovementioned phospholipids, with cholesterol and with glycolipids will then be integrated with our current picture of myelin protein assembly (e.g. Colman et al., this volume). The relatedness of the dual mechanisms for proteins and lipids will be stressed. One mechanism involves the Golgi apparatus as the sorting station for integral proteins (as proteolipid protein and P0) and certain glycolipids to the external leaflet. The other mechanism is based at (or near) the plasma membrane or in adjacent myelin, to rapidly sequester myelin basic proteins and certain phospholipids into the cytoplasmic face of compact myelin.


Sciatic Nerve Myelin Basic Protein Myelin Sheath Myelin Protein Squid Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baranska, J., 1982, Biosynthesis and transport of phosphatidylserine in the cell, Adv. Lipid Res., 19: 163.Google Scholar
  2. Barenholz, Y. and Thompson, T. E., 1980, Sphingomyelin in bilayers and biological membranes, Biochim. Biophys. Acta, 604: 129.Google Scholar
  3. Benjamins, J. A., Iwata, R., and Hazlett, 1978, Kinetics of entry of proteins into the myelin membrane, J. Neurochem., 31: 1077.CrossRefGoogle Scholar
  4. Benjamins, J. A. and Smith, M. E., 1984, Metabolism of Myelin, in: “Myelin”, 2nd Ed., P. Morell, ed., Plenum Press, New York.Google Scholar
  5. Berridge, M. J. and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature, 312: 315.CrossRefGoogle Scholar
  6. Boggs, J. M. and Moscarello, M. A., 1978, Structural organization of the human membrane, Biochim. Biophys. Acta, 515: 1.CrossRefGoogle Scholar
  7. Boggs, J. M., Chia, L. S., Rangaraj, G., and Moscarello, M., 1986, Interaction of myelin basic protein with different ionization states of phosphatidic acid and phosphatidylserine, Chem. Phys. Lipids, 39: 164.CrossRefGoogle Scholar
  8. Braun, P. E., 1984, Molecular Organization of Myelin, in: “Myelin”, 2nd Ed., P. Morell, ed., Plenum Press, New York.Google Scholar
  9. Burgisser, P., Matthieu, J.-M., Jeserich, G., and Waehneldt, T. V, 1986, Myelin lipids: A phylogenetic study, Neurochem. Res., 11: 1261.CrossRefGoogle Scholar
  10. Clarke, N. G. and Dawson, R. M. C., 1981, Alkaline 0 N transacylation. A new method for the quantitative deacylation of phospholipids, Biochem. J., 195: 301.Google Scholar
  11. Clejan, S. and Bittman, R., 1984, Decreases in rates of lipid exchange between mycoplasma gallisepticom cells and unilamellar vesicles by incorporation of sphingomyelin, J. Biol. Chem., 259: 10823.Google Scholar
  12. Chou, K. H., Ilyas, A. A., Evans, J. E., and Quarles, R. H., 1985, Structure of a glycolipid reacting with monoclonal IgM in neuropathy and with HNK-1, Biochem. Biophys. Res. Commun., 128: 383.CrossRefGoogle Scholar
  13. Coleman, R. A. and Bell, R. M., 1983, Topography of membrane-bound enzymes that metabolize complex lipids, in: “The Enzymes”, 3rd Ed., Vol. XVI, P. D. Boyer, ed., Academic Press, New York.Google Scholar
  14. Dawson, R. M. C., 1985, Enzymic pathways of phospholipids in the nervous system, in: “Phospholipids in Nervous Tissues”, J. Eichberg, ed., John Wiley and Sons, New York.Google Scholar
  15. Deshmukh, D. S., Bear, W. D., and Brockerhoff, H., 1978, Polyphosphoinositide biosynthesis in three subfractions of rat brain myelin, J. Neurochem., 30: 1191.CrossRefGoogle Scholar
  16. Diringer, H., Marggaf, W. D., Koch, M. A., and Anderer, F. A., 1972, Evidence for a new biosynthesis pathway of sphingomyelin in SV 40 transformed mouse cells, Biochem. Biophys. Res. Commun., 47: 1345.CrossRefGoogle Scholar
  17. Finean, J. B. and Michell, R. H., 1981, Isolation, composition and general structure of membranes, in: “Membrane Structure”, J. B. Finean and R. H. Michell, eds., Elsevier/North-Holland Biomedical Press, Amsterdam, Holland.Google Scholar
  18. Gould, R. M., Matsumoto, D., and Mattingly, G., 1982, The Schwann Cell, in: “Handbook of Neurochemistry”, 2nd Ed., Vol. 1, A. Lajtha, ed., Plenum Press, New York.Google Scholar
  19. Gould, R. M. and Dawson, R. M. C., 1976, Incorporation of newly-formed lecithin into peripheral nerve myelin, J. Cell Biol., 68: 480.CrossRefGoogle Scholar
  20. Gould, R. M., 1985, Myelin Development, in: “Developmental Neurochemistry”, R. C. Wiggins, D. W. McCandless, and S. J. Enna, eds., Univ. Of Texas Press, Austin, TX.Google Scholar
  21. Gould, R. M., Connell, F., and Spivack, W. D., 1987a, Phospholipid metabolism in mouse sciatic nerve in vivo: possible relevance to myelination, J. Neurochem., 48: 853.CrossRefGoogle Scholar
  22. Gould, R. M., Holshek, J., Silverman, W. D., and Spivack, W. D., 1987b, Localization of phospholipid synthesis to Schwann cells and axons, J. Neurochem., 48: 1121.CrossRefGoogle Scholar
  23. Hedley-Whyte, E. T., Rawlins, F. A., Salpeter, M. M., and Uzman, B. G., 1969, Distribution of cholesterol 1,2-H during maturation of mouse peripheral nerve, Lab. Invest., 21: 536.Google Scholar
  24. Hedley-Whyte, E. T., 1975, Distribution of [l,2-3H] cholesterol in mouse brain after injection in the suckling period, J. Cell Biol., 66: 333.CrossRefGoogle Scholar
  25. Holtzman, E. and Mercurio, A. M., 1980, Membrane circulation in neurons and photoreceptors: some unresolved issues. Int. Rev. Cytol., 67: 1.CrossRefGoogle Scholar
  26. Irvine, R. F., 1982, The enzymology of stimulated inositol lipid turnover, Cell Calcium, 3: 295.CrossRefGoogle Scholar
  27. Kaplan, M. R. and Simoni, R. D., 1985, Transport of cholesterol from the endoplasmic reticulum to the plasma membrane, J. Cell Biol., 101: 446.CrossRefGoogle Scholar
  28. Kirschner, D. A., Ganser, A. L., and Caspar, D. L. D., 1984, Diffraction studies of molecular organization and membrane interactions in myelin, in: “Myelin”, 2nd Ed., P. Morell, ed., Plenum Press, N. Y.Google Scholar
  29. Kishimoto, Y., 1983, Ceramides and cerebrosides, in: “Handbook of Neurochemistry”, 2nd Ed., Vol. 3, A. Lajtha, ed., Plenum Press, N. Y.Google Scholar
  30. Konat, G., 1981, Intracellular translocation of newly synthesized myelin proteins in the rat brain stem slices, Exp. Neurol., 73: 254.CrossRefGoogle Scholar
  31. Kuffler, S. W., Nicholls, J. G., and Martin, A. R., 1984, in: “From Neuron to Brain”, 2nd Ed., Sinhauer Associates, Sunderland, MA.Google Scholar
  32. Lange, Y. and Steck, T., 1985, Cholesterol-rich intracellular membranes: A precursor to the plasma membrane, J. Biol. Chem., 260: 15592.Google Scholar
  33. Ledeen, R. W., 1979, Structure and distribution of gangliosides, in: “Complex Carbohydrates of Nervous Tissue”, R. U. Margolis and R. K. Margolis, eds. Plenum Press, New York.Google Scholar
  34. Ledeen, R. W., 1984, Lipid-metabolizing enzymes of myelin and their relation to the axons, J. Lipid Res., 25: 1548.Google Scholar
  35. Lipsky, N. G. and Pagano, R. E., 1985, Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane, J. Cell Biol., 100: 27.CrossRefGoogle Scholar
  36. London, Y., Demel, R. A., Van Kessel, G., Zahler, W. S. M., and Van Deenen, L. L. M., 1974, The interaction of the “Folch-Lees” protein with lipids at the air-water interface, Biochim. Biophys. Acta, 332: 69.CrossRefGoogle Scholar
  37. Malgat, M., Maurice, A., and Baraud, J., 1986, Sphingomyelin and ceramide-phosphoethanolamine synthesis by microsomes and plasma membranes from rat liver and brain, J. Lipid Res., 27: 251.Google Scholar
  38. Marggraf, W. D., Anderer, F. A., and Kanfer, J. N., 1981, The formation of sphingomyelin from phosphatidylcholine in plasma membrane preparations from mouse fibroblasts, Biochim. Biophys. Acta, 664: 61.CrossRefGoogle Scholar
  39. Marggraf, W. D., Zertani, R., Anderer, F. A., and Kanfer, J. N., 1982, The role of endogenous phosphatidylcholine and ceramide in the biosynthesis of sphingomyelin in mouse fibroblasts, Biochim. Biophys. Acta, 710: 314.CrossRefGoogle Scholar
  40. Morell, P. and Toews, A. D., 1984, In vivo metabolism of oligodendroglial lipids, Adv. Neurochem., 5: 47.Google Scholar
  41. Neskovic, N. M., Roussel, G., and Nussbaum, J. L., 1986, UDP galactose: ceramide galactosyltransferase of rat brain: A new method of purification and production of specific antibodies, J. Neurochem., 47: 1412.CrossRefGoogle Scholar
  42. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature, 308: 693.CrossRefGoogle Scholar
  43. Norton, W. T., 1981, Formation, structure and biochemistry of myelin, in: “Basic Neurochemistry”, G. J. Siegel, R. W. Albers, B. W. Agranoff and R. Katzman, eds., Little Brown and Co., Boston.Google Scholar
  44. Norton, W. T. and Cammer, W., 1984, Isolation and characterization of myelin, in: “Myelin”, 2nd Ed., P. Morell, ed., Plenum Press, New York.Google Scholar
  45. Palmer, F. B. and Dawson, R. M. C., 1969, Complex formation between triphos-phoinoisitide and experimental allergic encephalitogenic protein, Biochem. J., 11: 637.Google Scholar
  46. Patton, S., 1970, Correlative relationship of cholesterol and sphingomyelin in cell membranes, J. Theor. Biol., 29: 489.CrossRefGoogle Scholar
  47. Palech, S. L. and Vance, D. E., 1984, Regulation of phosphatidylcholine biosynthesis, Biochim. Biophys. Acta, 779: 217.CrossRefGoogle Scholar
  48. Radin, N. S., 1983, Sulfatides, in: “Handbook of Neurochemistry”, 2nd Ed., Vol. 3, A. Lajtha, ed., Plenum Press, New York.Google Scholar
  49. Rawlins, F. A., 1973, A time-sequence autoradiographic study of the in vivo incorporation of 1,2-3H of cholesterol into peripheral nerve myelin, J. Cell Biol., 58: 42.CrossRefGoogle Scholar
  50. Ritchie, J. M., 1984, Physiological basis of conduction in myelinated nerve fibers, in: “Myelin”, 2nd Ed., P. Morell, ed., Plenum Press, N.Y.Google Scholar
  51. Smith, M. E., 1973, A regional survey of myelin development: some compositional and metabolic aspects, J. Lipid Res., 15: 541.Google Scholar
  52. Stoner, G. L., 1984, Predicted folding of structure in myelin basic proteins, J. Neurochem., 43: 433.CrossRefGoogle Scholar
  53. Sun, G. Y. and Foudin, L. L., 1983, Phospholipid composition and metabolism in the developing and aging nervous system, in: “Phospholipids in Nervous Tissues”, J. Eichberg, ed., John Wiley and Sons, N.Y.Google Scholar
  54. Tennekoon, G., Zaruba, M., and Wolinsky, J., 1983, Topography of cerebroside sulfotransferase in Golgi-enriched vesicles from rat brain, J. Cell Biol., 97: 1107.CrossRefGoogle Scholar
  55. van den Hill, A., van Heusden, G. P. H., and Wirtz, K. W. A., 1985, The synthesis of sphingomyelin in the Morris hepatomas 7777 and 5123 D is restricted to the plasma membrane, Biochim. Biophys. Acta, 833: 354.CrossRefGoogle Scholar
  56. Voelker, D. R. and Kennedy, E. P., 1983, Phospholipid exchange protein-dependent synthesis of sphingomyelin, Methods Enzymol., 98: 596.CrossRefGoogle Scholar
  57. Webster, H. de F., 1971, The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerve, J. Cell Biol., 48: 348.CrossRefGoogle Scholar
  58. Wiggins, R. C., Benjamins, J. A., and Morell, P., 1975, Appearance of myelin proteins in rat sciatic nerve during development, Brain Res., 89: 99.CrossRefGoogle Scholar
  59. Yao, J. K., 1984, Lipid composition of normal and degenerating nerve, in: “Peripheral Neuropathies”, 2nd Ed., Vol. 1, P. J. Dyck, P. K. Thomas, E. H. Lambert and R. Bunge, eds, W. B. Saunders Co., Philadelphia.Google Scholar
  60. Zilversmit, D. B., 1984, Lipid transfer proteins, J. Lipid Res., 25: 1563.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. M. Gould
    • 1
  • W. Spivack
    • 1
  • R. Cataneo
    • 1
  • J. Holshek
    • 1
  • G. Konat
    • 2
  1. 1.Institute for Basic Research in Developmental Disabilities Staten IslandNew YorkUSA
  2. 2.Dept. of NeurologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations