Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 142))

Abstract

In the spirit of a workshop, I will discuss possibilities of there being two independent mechanisms for the entry of lipids into the myelin sheath. These proposed mechanisms would work separately, though not necessarily independently, to deploy different lipids in the cytoplasmic and external sides, respectively, of the ‘asymmetric’ bilayer membrane. Before elaborating on these mechanisms, I will discuss pertinent material under six topics: (1) need for myelin, (2) myelin lipid composition, (3) dynamics of myelin lipids, (4) metabolism of sphingomyelin, ethanolamine plasmalogen, phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, (5) cholesterol metabolism and (6) glycolipid metabolism. The strategies used to provide myelin with the abovementioned phospholipids, with cholesterol and with glycolipids will then be integrated with our current picture of myelin protein assembly (e.g. Colman et al., this volume). The relatedness of the dual mechanisms for proteins and lipids will be stressed. One mechanism involves the Golgi apparatus as the sorting station for integral proteins (as proteolipid protein and P0) and certain glycolipids to the external leaflet. The other mechanism is based at (or near) the plasma membrane or in adjacent myelin, to rapidly sequester myelin basic proteins and certain phospholipids into the cytoplasmic face of compact myelin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baranska, J., 1982, Biosynthesis and transport of phosphatidylserine in the cell, Adv. Lipid Res., 19: 163.

    Google Scholar 

  • Barenholz, Y. and Thompson, T. E., 1980, Sphingomyelin in bilayers and biological membranes, Biochim. Biophys. Acta, 604: 129.

    Google Scholar 

  • Benjamins, J. A., Iwata, R., and Hazlett, 1978, Kinetics of entry of proteins into the myelin membrane, J. Neurochem., 31: 1077.

    Article  Google Scholar 

  • Benjamins, J. A. and Smith, M. E., 1984, Metabolism of Myelin, in: “Myelin”, 2nd Ed., P. Morell, ed., Plenum Press, New York.

    Google Scholar 

  • Berridge, M. J. and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature, 312: 315.

    Article  Google Scholar 

  • Boggs, J. M. and Moscarello, M. A., 1978, Structural organization of the human membrane, Biochim. Biophys. Acta, 515: 1.

    Article  Google Scholar 

  • Boggs, J. M., Chia, L. S., Rangaraj, G., and Moscarello, M., 1986, Interaction of myelin basic protein with different ionization states of phosphatidic acid and phosphatidylserine, Chem. Phys. Lipids, 39: 164.

    Article  Google Scholar 

  • Braun, P. E., 1984, Molecular Organization of Myelin, in: “Myelin”, 2nd Ed., P. Morell, ed., Plenum Press, New York.

    Google Scholar 

  • Burgisser, P., Matthieu, J.-M., Jeserich, G., and Waehneldt, T. V, 1986, Myelin lipids: A phylogenetic study, Neurochem. Res., 11: 1261.

    Article  Google Scholar 

  • Clarke, N. G. and Dawson, R. M. C., 1981, Alkaline 0 N transacylation. A new method for the quantitative deacylation of phospholipids, Biochem. J., 195: 301.

    Google Scholar 

  • Clejan, S. and Bittman, R., 1984, Decreases in rates of lipid exchange between mycoplasma gallisepticom cells and unilamellar vesicles by incorporation of sphingomyelin, J. Biol. Chem., 259: 10823.

    Google Scholar 

  • Chou, K. H., Ilyas, A. A., Evans, J. E., and Quarles, R. H., 1985, Structure of a glycolipid reacting with monoclonal IgM in neuropathy and with HNK-1, Biochem. Biophys. Res. Commun., 128: 383.

    Article  Google Scholar 

  • Coleman, R. A. and Bell, R. M., 1983, Topography of membrane-bound enzymes that metabolize complex lipids, in: “The Enzymes”, 3rd Ed., Vol. XVI, P. D. Boyer, ed., Academic Press, New York.

    Google Scholar 

  • Dawson, R. M. C., 1985, Enzymic pathways of phospholipids in the nervous system, in: “Phospholipids in Nervous Tissues”, J. Eichberg, ed., John Wiley and Sons, New York.

    Google Scholar 

  • Deshmukh, D. S., Bear, W. D., and Brockerhoff, H., 1978, Polyphosphoinositide biosynthesis in three subfractions of rat brain myelin, J. Neurochem., 30: 1191.

    Article  Google Scholar 

  • Diringer, H., Marggaf, W. D., Koch, M. A., and Anderer, F. A., 1972, Evidence for a new biosynthesis pathway of sphingomyelin in SV 40 transformed mouse cells, Biochem. Biophys. Res. Commun., 47: 1345.

    Article  Google Scholar 

  • Finean, J. B. and Michell, R. H., 1981, Isolation, composition and general structure of membranes, in: “Membrane Structure”, J. B. Finean and R. H. Michell, eds., Elsevier/North-Holland Biomedical Press, Amsterdam, Holland.

    Google Scholar 

  • Gould, R. M., Matsumoto, D., and Mattingly, G., 1982, The Schwann Cell, in: “Handbook of Neurochemistry”, 2nd Ed., Vol. 1, A. Lajtha, ed., Plenum Press, New York.

    Google Scholar 

  • Gould, R. M. and Dawson, R. M. C., 1976, Incorporation of newly-formed lecithin into peripheral nerve myelin, J. Cell Biol., 68: 480.

    Article  Google Scholar 

  • Gould, R. M., 1985, Myelin Development, in: “Developmental Neurochemistry”, R. C. Wiggins, D. W. McCandless, and S. J. Enna, eds., Univ. Of Texas Press, Austin, TX.

    Google Scholar 

  • Gould, R. M., Connell, F., and Spivack, W. D., 1987a, Phospholipid metabolism in mouse sciatic nerve in vivo: possible relevance to myelination, J. Neurochem., 48: 853.

    Article  Google Scholar 

  • Gould, R. M., Holshek, J., Silverman, W. D., and Spivack, W. D., 1987b, Localization of phospholipid synthesis to Schwann cells and axons, J. Neurochem., 48: 1121.

    Article  Google Scholar 

  • Hedley-Whyte, E. T., Rawlins, F. A., Salpeter, M. M., and Uzman, B. G., 1969, Distribution of cholesterol 1,2-H during maturation of mouse peripheral nerve, Lab. Invest., 21: 536.

    Google Scholar 

  • Hedley-Whyte, E. T., 1975, Distribution of [l,2-3H] cholesterol in mouse brain after injection in the suckling period, J. Cell Biol., 66: 333.

    Article  Google Scholar 

  • Holtzman, E. and Mercurio, A. M., 1980, Membrane circulation in neurons and photoreceptors: some unresolved issues. Int. Rev. Cytol., 67: 1.

    Article  Google Scholar 

  • Irvine, R. F., 1982, The enzymology of stimulated inositol lipid turnover, Cell Calcium, 3: 295.

    Article  Google Scholar 

  • Kaplan, M. R. and Simoni, R. D., 1985, Transport of cholesterol from the endoplasmic reticulum to the plasma membrane, J. Cell Biol., 101: 446.

    Article  Google Scholar 

  • Kirschner, D. A., Ganser, A. L., and Caspar, D. L. D., 1984, Diffraction studies of molecular organization and membrane interactions in myelin, in: “Myelin”, 2nd Ed., P. Morell, ed., Plenum Press, N. Y.

    Google Scholar 

  • Kishimoto, Y., 1983, Ceramides and cerebrosides, in: “Handbook of Neurochemistry”, 2nd Ed., Vol. 3, A. Lajtha, ed., Plenum Press, N. Y.

    Google Scholar 

  • Konat, G., 1981, Intracellular translocation of newly synthesized myelin proteins in the rat brain stem slices, Exp. Neurol., 73: 254.

    Article  Google Scholar 

  • Kuffler, S. W., Nicholls, J. G., and Martin, A. R., 1984, in: “From Neuron to Brain”, 2nd Ed., Sinhauer Associates, Sunderland, MA.

    Google Scholar 

  • Lange, Y. and Steck, T., 1985, Cholesterol-rich intracellular membranes: A precursor to the plasma membrane, J. Biol. Chem., 260: 15592.

    Google Scholar 

  • Ledeen, R. W., 1979, Structure and distribution of gangliosides, in: “Complex Carbohydrates of Nervous Tissue”, R. U. Margolis and R. K. Margolis, eds. Plenum Press, New York.

    Google Scholar 

  • Ledeen, R. W., 1984, Lipid-metabolizing enzymes of myelin and their relation to the axons, J. Lipid Res., 25: 1548.

    Google Scholar 

  • Lipsky, N. G. and Pagano, R. E., 1985, Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane, J. Cell Biol., 100: 27.

    Article  Google Scholar 

  • London, Y., Demel, R. A., Van Kessel, G., Zahler, W. S. M., and Van Deenen, L. L. M., 1974, The interaction of the “Folch-Lees” protein with lipids at the air-water interface, Biochim. Biophys. Acta, 332: 69.

    Article  Google Scholar 

  • Malgat, M., Maurice, A., and Baraud, J., 1986, Sphingomyelin and ceramide-phosphoethanolamine synthesis by microsomes and plasma membranes from rat liver and brain, J. Lipid Res., 27: 251.

    Google Scholar 

  • Marggraf, W. D., Anderer, F. A., and Kanfer, J. N., 1981, The formation of sphingomyelin from phosphatidylcholine in plasma membrane preparations from mouse fibroblasts, Biochim. Biophys. Acta, 664: 61.

    Article  Google Scholar 

  • Marggraf, W. D., Zertani, R., Anderer, F. A., and Kanfer, J. N., 1982, The role of endogenous phosphatidylcholine and ceramide in the biosynthesis of sphingomyelin in mouse fibroblasts, Biochim. Biophys. Acta, 710: 314.

    Article  Google Scholar 

  • Morell, P. and Toews, A. D., 1984, In vivo metabolism of oligodendroglial lipids, Adv. Neurochem., 5: 47.

    Google Scholar 

  • Neskovic, N. M., Roussel, G., and Nussbaum, J. L., 1986, UDP galactose: ceramide galactosyltransferase of rat brain: A new method of purification and production of specific antibodies, J. Neurochem., 47: 1412.

    Article  Google Scholar 

  • Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature, 308: 693.

    Article  Google Scholar 

  • Norton, W. T., 1981, Formation, structure and biochemistry of myelin, in: “Basic Neurochemistry”, G. J. Siegel, R. W. Albers, B. W. Agranoff and R. Katzman, eds., Little Brown and Co., Boston.

    Google Scholar 

  • Norton, W. T. and Cammer, W., 1984, Isolation and characterization of myelin, in: “Myelin”, 2nd Ed., P. Morell, ed., Plenum Press, New York.

    Google Scholar 

  • Palmer, F. B. and Dawson, R. M. C., 1969, Complex formation between triphos-phoinoisitide and experimental allergic encephalitogenic protein, Biochem. J., 11: 637.

    Google Scholar 

  • Patton, S., 1970, Correlative relationship of cholesterol and sphingomyelin in cell membranes, J. Theor. Biol., 29: 489.

    Article  Google Scholar 

  • Palech, S. L. and Vance, D. E., 1984, Regulation of phosphatidylcholine biosynthesis, Biochim. Biophys. Acta, 779: 217.

    Article  Google Scholar 

  • Radin, N. S., 1983, Sulfatides, in: “Handbook of Neurochemistry”, 2nd Ed., Vol. 3, A. Lajtha, ed., Plenum Press, New York.

    Google Scholar 

  • Rawlins, F. A., 1973, A time-sequence autoradiographic study of the in vivo incorporation of 1,2-3H of cholesterol into peripheral nerve myelin, J. Cell Biol., 58: 42.

    Article  Google Scholar 

  • Ritchie, J. M., 1984, Physiological basis of conduction in myelinated nerve fibers, in: “Myelin”, 2nd Ed., P. Morell, ed., Plenum Press, N.Y.

    Google Scholar 

  • Smith, M. E., 1973, A regional survey of myelin development: some compositional and metabolic aspects, J. Lipid Res., 15: 541.

    Google Scholar 

  • Stoner, G. L., 1984, Predicted folding of structure in myelin basic proteins, J. Neurochem., 43: 433.

    Article  Google Scholar 

  • Sun, G. Y. and Foudin, L. L., 1983, Phospholipid composition and metabolism in the developing and aging nervous system, in: “Phospholipids in Nervous Tissues”, J. Eichberg, ed., John Wiley and Sons, N.Y.

    Google Scholar 

  • Tennekoon, G., Zaruba, M., and Wolinsky, J., 1983, Topography of cerebroside sulfotransferase in Golgi-enriched vesicles from rat brain, J. Cell Biol., 97: 1107.

    Article  Google Scholar 

  • van den Hill, A., van Heusden, G. P. H., and Wirtz, K. W. A., 1985, The synthesis of sphingomyelin in the Morris hepatomas 7777 and 5123 D is restricted to the plasma membrane, Biochim. Biophys. Acta, 833: 354.

    Article  Google Scholar 

  • Voelker, D. R. and Kennedy, E. P., 1983, Phospholipid exchange protein-dependent synthesis of sphingomyelin, Methods Enzymol., 98: 596.

    Article  Google Scholar 

  • Webster, H. de F., 1971, The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerve, J. Cell Biol., 48: 348.

    Article  Google Scholar 

  • Wiggins, R. C., Benjamins, J. A., and Morell, P., 1975, Appearance of myelin proteins in rat sciatic nerve during development, Brain Res., 89: 99.

    Article  Google Scholar 

  • Yao, J. K., 1984, Lipid composition of normal and degenerating nerve, in: “Peripheral Neuropathies”, 2nd Ed., Vol. 1, P. J. Dyck, P. K. Thomas, E. H. Lambert and R. Bunge, eds, W. B. Saunders Co., Philadelphia.

    Google Scholar 

  • Zilversmit, D. B., 1984, Lipid transfer proteins, J. Lipid Res., 25: 1563.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Gould, R.M., Spivack, W., Cataneo, R., Holshek, J., Konat, G. (1987). Lipids and Myelination. In: Crescenzi, G.S. (eds) A Multidisciplinary Approach to Myelin Diseases. NATO ASI Series, vol 142. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0354-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0354-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0356-6

  • Online ISBN: 978-1-4757-0354-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics