Posttranslational Modification of Myelin Proteins

  • A. Toews
  • P. Morell
Part of the NATO ASI Series book series (NSSA, volume 142)


Myelin of the central nervous system (CNS) is produced as an extension of the plasma membrane of oligodendroglial cells; it is spiraled around the axons, and in mature animals, exists as a compact multilamellar structure. The nature of the signals directing the initiation of myelination (interaction of the oligodendroglial plasma membrane with an axon), and the mechanisms involved in the subsequent spiraling of membrane around the axon and the eventual compaction of these membranes to give mature myelin, remain largely unknown. Presumably, these complex processes involve interactions between proteins, or perhaps more specifically, between functional groups modifyng these proteins.


Myelin Basic Protein Basic Protein Myelin Protein Peptide Backbone Myelin Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, H. C., Randle, C. L., and Agrawal, D., 1982, In vivo acylation of rat brain myelin proteolipid protein, J. Biol. Chenu, 257: 4588–4592.Google Scholar
  2. Agrawal, H. C., Schmidt, R. E., and Agrawal, D., 1983, In vivo incorporation of [3H] palmitic acid into PO protein, the major intrinsic protein of rat sciatic nerve myelin. Evidence for covalent linkage of fatty acid to PO, J. Biol. Chenu, 258: 6556–6560.Google Scholar
  3. Amur, S. G., Shanker, G., Cochran, J. M., and Pieringer, R. A., 1986, Correlation between inhibition of myelin basic protein (arginine) methyltransferase by sinefungin and lack of compact myelin formation in cultures of cerebral cells from embryonic mice, J. Neurosci., Res., 16: 367–376.CrossRefGoogle Scholar
  4. Benjamins, J. A., Morell, P., Hartman, B. K., and Agrawal, H. C., 1984, Central Nervous System Myelin, in: “Handbook of Neurochemistry”, vol. 7, A. Lajtha, ed., Plenum Press, New York.Google Scholar
  5. Bizzozero, O. A. and Lees, M. G., 1986, Fatty acid acylation of rat brain myelin proteolipid in vitro: Identification of the lipid donor, J. Neurochem., 46: 630–636.CrossRefGoogle Scholar
  6. Boggs, J. M. and Moscarello, M. A., Structural organization of the human myelin membrane, Biochim. Biophys. Acta, 515: 1–21.Google Scholar
  7. Bradbury, J. M., Campbell, R. S., and Thompson, R. J., 1984, Endogenous cyclic-AMP-stimulated phosphorylation of a Wolfgram protein component in rabbit central nervous system myelin, Biochem. J., 221: 351–359.Google Scholar
  8. Braun, P. E. and Radin, N. S., 1969, Interactions of lipids with a membrane structural protein from myelin, Biochemistry, 8: 4310–4318.CrossRefGoogle Scholar
  9. Cammer, W., Sirota, S. R., and Norton, W. T., 1980, The effect of reducing agents on the apparent molecular weight of the myelin Po protein and the possible identity of the P and “Y” proteins, J. Neurochem., 34: 404–409.CrossRefGoogle Scholar
  10. Crang, A. J. and Jacobson, W., 1982, The relationship of myelin basic protein (arginine) methyltransferase to myelination in mouse spinal cord, J. Neurochem., 39: 244–247.CrossRefGoogle Scholar
  11. DesJardins, K. C. and Morell, P., 1983, Phosphate groups modifying myelin basic proteins are metabolically labile; methyl groups are stable, J. Cell Biol., 97: 438–446.CrossRefGoogle Scholar
  12. Deibler, G. E., Martenson, R. E., Kramer, A. J., and Kies, M. W., 1975, The contribution of phosphorylation and loss of COOH-terminal Arginine to the microheterogeniety of myelin basic protein, J. Biol. Chem., 250: 7931–7938.Google Scholar
  13. Everly, J. L., Brady, R. O., and Quarles, R. H., 1973, Evidence that the major protein in rat sciatic nerve myelin is a glycoprotein, J. Neurochem., 21: 239–334.CrossRefGoogle Scholar
  14. Favilla, J. T., Frail, D. E., Palkovitz, C. G., Stoner, G. L., Braun, P. E., and Webster, H. F. de, 1984, Myelin-associated glycoprotein (MAG) distribution in human central nervous tissue studied immunocytochemically with monoclonal antibody, J. Neuroimmunol., 6: 19–30.CrossRefGoogle Scholar
  15. Frail, D. E. and Braun, P. E., 1984, Two developmental regulated messenger RNAs differing in their coding region may exist for the myelin-associated glycoprotein, J. Biol. Chem., 259: 14857–14862.Google Scholar
  16. Ganser, A. L. and Kirschner, D. A., 1980, Myelin structure in the absence of basic protein in the shirever mouse, in: “Neurological Mutations Affecting Myelination”, INSERM Symposium No. 14, N. Baumann, ed., Elsevier/North Holland, AMsterdam.Google Scholar
  17. Gilbert, W. R., Garwood, M. M., Agrawal, D., Schmidt, M. E., and Agrawal, H. C., 1982, Immunoblot identification of phosphorylated basic proteins of rat and rabbit CNS and PNS myelin, Neurochem. Res., 7: 1495–1506.CrossRefGoogle Scholar
  18. Helynck, G., Nussbaum, J.-L., Picken, D., Skalidis, G., Trifilieff, E., van Dorsselaer, A., Seta, P., Sandeaux, R., Gavich, C., Heitz, F., Simon, R., and Spach, G., 1983, Brain proteolipids. Isolation, purification and effect on ionic permeability of membranes, Eur. J. Biochem., 133: 689–695.CrossRefGoogle Scholar
  19. Ishaque, A., Roomi, M. W., Szymanska, I., Kowalski, S., and Elayer, E. H., 1980, The Po glycoprotein of peripheral nerve myelin, Can. J. Biochem., 58: 913–921.Google Scholar
  20. Jacobson, W., Gandy, G., and Sidman, R. L., 1973, Experimental subacute combined degeneration of the cord in mice, J. Pathol., 109: 13–14.Google Scholar
  21. Kamholz, J., de Ferra, F., Puckett, C., and Lazzarini, R., 1986, Identification of three forms of human myelin basic protein by cDNA cloning, Proc. Natl. Acad. Sci. USA, 83: 4962–4966.CrossRefGoogle Scholar
  22. Kim, S., Tuck, M., Ho, L.-l, Campagnoni, A. T., Barbarese, E., Knobler, R. l., Lublin, F. D., Chanderkar, L. P., and Paik, W. K., 1986, Myelin basic protein-specific protein methylase I activity in shiverer mutant mouse brain, J. Neurosci. Res., 16: 257–365.CrossRefGoogle Scholar
  23. Kim, S., Tuck, M., and Kim, L.L., 1984, Studies on myelin basic protein-specific protein methylase I in various dysmyelinating mutant mice, Biochem. Biophys. Res. Comm., 17: 468–474.CrossRefGoogle Scholar
  24. Laursen, R. A., Samiullah, M., and Lees, M. B., 1984, The structure of bovine brain myelin proteolipid and its organization in myelin, Proc. Natl. Acad. Sci. USA, 81: 2912–2916.CrossRefGoogle Scholar
  25. Lee, H. W., Kim, S., and Paik, W. K., 1977, S-adenosylmethionine: protein arginine methyltransferase. Purification and mechanism of the enzyme, Biochemistry, 16: 78–85.CrossRefGoogle Scholar
  26. Lees, M. B., Chao, B. H., Lin, L.-F. H., Samiullah, M., and Laursen, R. A., 1983, Amino acid sequence of bovine white matter proteolipid, Arch. Biochem. Biophys., 226: 643–656.CrossRefGoogle Scholar
  27. Lemke, G., 1986, Molecular biology of the major myelin genes, TINS, 9: 266–269.Google Scholar
  28. Lin, L.-F. H., and Lees, M. B., 1982, Interactions, of dicyclohexylcarbodiimide with myelin proteolipid, Proc. Natl. Acad. Sci. USA, 79: 941–945.CrossRefGoogle Scholar
  29. Linderberg, O. and Ernster, L., 1950, The turnover of radioactive phosphate injected into the subarachnoid space of the brain of the rat, Biochem. J., 46: 43–47.Google Scholar
  30. Morell, P., 1984, “Myelin”, Plenum Press, New York.CrossRefGoogle Scholar
  31. Martenson, R. E., 1980, Myelin basic protein: What does it do?, in: “Biochemistry of Brain”, S. Kumar, ed., Pergamon Press, England.Google Scholar
  32. Martenson, R. E., Law, M. J., and Deibler, G. E., 1983, Identification of multiple in vitro phosphorylation sites in rabbit myelin basic protein, J. Biol. Chem., 258: 930–937.Google Scholar
  33. Matthieu J.-M., Everly, J. L., Brady, R. O., and Quarles, R. H., 1975a, [35S]sulfate incorporation into myelin glycoprotein. II. Peripheral nervous tissue, Biochim. Biophys. Acta, 392: 167–174.CrossRefGoogle Scholar
  34. Matthieu, J.-M., Quarles, R. H., Poduslo, J., and Brady, R. O., 1975b, [35S] sulfate incorporation into myelin glycoproteins. I. Central nervous system, Biochim. Biophys. Acta, 392: 159–166.CrossRefGoogle Scholar
  35. McIntyre, L. J., Quarles, R. H., and Brady, R. O., 1978, The effect of trypsin on myelin-associated glycoprotein, Trans. Amer. Soc. Neurochem., 9: 106.Google Scholar
  36. McNamara, J. O., and Appel, S. H., 1977, Myelin basic protein phosphatase activity in rat brain, J. Neurochem., 29: 27–35.CrossRefGoogle Scholar
  37. Miyake, M., 1975, Methylases of myelin basic protein and histone in rat brain, J. Neurochem., 24: 905–915.CrossRefGoogle Scholar
  38. Myamoto, E., 1976, Phosphorylation of endogenous proteins in myelin of rat brain, J. Neurochem., 26: 573–577.CrossRefGoogle Scholar
  39. Myamoto, E. and Kakiuchi, S., 1974, In vitro and in vivo phosphorylation of myelin basic protein by exogenous and endogenous adenosine 3′:5′-monophosphate-dependent protein kinases in brain, J. Biol. Chem., 249: 2769–2777.Google Scholar
  40. Myamoto, E. and Kakiuchi, S., 1975, Phosphoprotein phosphatases for myelin basic protein in myelin and cytosol of brain, Biochim. Biophys. Acta, 384: 458–465.CrossRefGoogle Scholar
  41. Moore, B. R. and Free, S. J., 1985, Protein modification and its biological role, Int. J. Biochem., 17: 283–289.CrossRefGoogle Scholar
  42. Murray, N. and Steck, A. J., 1983, Depolarizing agents regulate the phosphorylation of myelin basic protein in rat optic nerves, J. Neurochem., 41: 543–548.CrossRefGoogle Scholar
  43. Murray, N. and Steck, A. J., Impulse conduction regulated myelin basic protein phosphorylation in rat optic nerve, J. Neurochem., 43: 243–248.Google Scholar
  44. Petrali, E. H., Thiessen, B. J., and Sulakhe, P. V., 1980, Magnesium ion-dependent, calcium ion-stimulated, endogenous protein kinase-catalyzed phosphorylation of basic proteins in myelin fraction of rat brain white matter, Int. J. Biochem., 11: 21–36.CrossRefGoogle Scholar
  45. Poduslo, J. F., 1981, Developmental regulation of the carbohydrate composition of glycoproteins associated with central nervous system myelin, J. Neurochem., 36: 1924–1931.CrossRefGoogle Scholar
  46. Poduslo, J. F., 1985, Posttranslational protein modification: Biosynthesis control mechanism in the glycosylation of the major myelin glycoprotein by Schwann cells, J. Neurochem., 44: 1194–1206.CrossRefGoogle Scholar
  47. Poduslo, J. F. and Windebank, A. J., 1985, Defferentiation-specific regulation of Schwann cell expression of the major myelin glycoprotein, Proc. Natl. Acad. Sci. USA, 82: 5987–5991.CrossRefGoogle Scholar
  48. Quarles, R. H., 1976, Effects of pronase and neuraminidase treatment on a myelin-associated glycoprotein in developing brain, Biochem. J., 156: 143–150.Google Scholar
  49. Quarles, R. H., 1983/84, Myelin-associated glycoprotein in development and disease, Dev. Neurosci., 6: 285–303.CrossRefGoogle Scholar
  50. Quarles, R. H., 1987, Myelin-associated glycoprotein: Functional and clinical aspects, in: “Neurobiological Research, vol.11, Functional and Clinical Aspects of Neuronal and Glial Proteins”, P. J. Marangos, I. Campbell and R. M. Cohen, eds., in press.Google Scholar
  51. Quarles, R. H. and Everly, J. L., 1977, Glycopeptide fractions prepared from purified central and peripheral rat myelin, Biochim. Biophys. Acta, 466: 176–186.CrossRefGoogle Scholar
  52. Quarles, R. H., Everly, J. L., and Brady, R. O., 1973, Myelin-associated glycoprotein: a developmental change, 58: 506–509.Google Scholar
  53. Quarles, R. H. and Trapp, B. D., 1984, Matters Arising: Localization of the myelin-associated glycoprotein, J. Neurochem., 43: 1773–1774.CrossRefGoogle Scholar
  54. Rapaport, R. N. and Benjamins, J. A., 1981, Kinetics of entry of Po protein into peripheral nerve myelin, J. Neurochem., 37: 164–171.CrossRefGoogle Scholar
  55. Roth, H. J. Kronquist, K., Pretorius, P. J., Crandall, B. F., and Campagnoni, A. T., 1986, Isolation and characterization of a cDNA coding for a novel human 17.3K myelin basic protein (MBP) variant, J. Neurosci. Res., 16: 227–238.CrossRefGoogle Scholar
  56. Scott, J. M., Dinn, J. J., Wilson, P., and Weir, D. G., 1981, Pathogenesis of subacute combined degeneration: A result of methyl group deficiency, Lancet, 2: 334–337.CrossRefGoogle Scholar
  57. Singh, H. and Spritz, N., 1976, Protein kinases associated with peripheral nerve myelin. I. Phosphorylation of endogenous myelin proteins and exogenous substrates, Biochim. Biophys. Acta, 448: 325–337.CrossRefGoogle Scholar
  58. Small, D. H., Carnegie, P. R., and Anderson, R. M., 1981, Cycloleucine-induced vacuolation of myelin is associated with inhibition of protein methylation, Neurosci. Lett., 21: 287–292.CrossRefGoogle Scholar
  59. Small, D. H., Carnegie, P. R., and Smart, S. J., 1981, Inhibition of myelin protein methylation by cycloleucine. A model for neurological lesions in vitamin B12 deficiency, in: “New Approaches to Nerve and Muscle Disorders: Basic and Applied Contributions”, A. D. Kidman, J. K. Tomkins, and R. A. Westerman, eds., Expertia Mediaca, Amsterdam.Google Scholar
  60. Sprinkle, T. J. and Sheedlo, H. J., 1983, Species cross-reactivity of an oligodendrocyte-Schwann cell antigen, Trans. Amer. Soc. Neurochem., 14: 211.Google Scholar
  61. Steck, A. J. and Appel, S. H., 1974, Phosphorylation of myelin basic protein, J. Biol. Chem., 249: 5416–5420.Google Scholar
  62. Stoffel, W., Hillen, H., and Giersiefen, H., 1984, Structure and molecular arrangement of proteolipid protein of central nervous system myelin, Proc. Acad. Sci. USA, 81: 5012–5016.CrossRefGoogle Scholar
  63. Stoffel, W., Hillen, H., Schroder, W., and Deutzmann, R., 1983, The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein), Hoppe-Seyler’s Z. Physiol.Chem., 364: 1455–1466.CrossRefGoogle Scholar
  64. Stoffyn, P. and Folch, J., 1971, On the type of linkage binding fatty acids present in brain white matter proteolipid apoprotein, Biochem. Biophys. Res. Comm., 44: 157–161.CrossRefGoogle Scholar
  65. Sulakhe, P. V., Petrali, E. H., Davis, E. R., and Thiessen, B. J., 1980, Calcium ion stimulated endogenous protein kinase catalyzed phosphorylation of basic proteins in myelin subfractions and myelin-like membrane fraction from rat brain, Biochemistry, 19: 5363–5371.CrossRefGoogle Scholar
  66. Ting-Beall, H. P., Lees, M. B., and Robertson, J. D., 1979, Interactions of Folch-Lees proteolipid apoprotein with planar lipid bilayers, J. Membrane Biol., 51: 33–46.CrossRefGoogle Scholar
  67. Toews, A. D., Fisher, H. R., Goodrum, J. F., Windes, S., and Morell, P., 1987, Metabolism of phosphate and sulfate groups modifying the Po protein of PNS myelin, J. Neurochem., 48: 883–887.CrossRefGoogle Scholar
  68. Townsend, L. E., Agrawal, D., Benjamins, J. A., and Agrawal, H. C., 1982, In vitro acylation of rat brain myelin proteolipid protein, J. Biol. Chenu., 257: 9745–9750.Google Scholar
  69. Townsend, L. E. and Benjamins, J. A., 1983, Effects of monensin on post-translational processing of myelin proteins, J. Neurochem., 40: 1333–1339.CrossRefGoogle Scholar
  70. Trapp, B. D. and Quarles, R. H., 1984, Immunocytochemical localization of myelin-associated glycoprotein: Fact or artifact?, J. Neuroimmunol., 6: 231–249.CrossRefGoogle Scholar
  71. Trapp, B. D., Quarles, R. H., and Suzuki, K., 1984, Immunocytochemical studies of quaking mice support a role for the myelin-associated glycoprotein in forming and maintaining the periaxonal space and periaxonal cytoplasmic collar in myelinating Schwann cells, J. Cell Biol., 99: 595–606.CrossRefGoogle Scholar
  72. Turner, R., Jen Chou, C.-H., Kibler, R. F., and Kuo, J. F., 1982, Basic protein in myelin is phosphorylated by endogenous phospholipid-sensitive Ca++-dependent protein kinase, J. Neurochem., 39: 1397–1404.CrossRefGoogle Scholar
  73. Ulmer, J. B. and Braun, P. E., 1983/84, In vivo phosphorylation of myelin basic proteins in developing mouse brain: Evidence that phosphorylation is an early event in myelin formation, Dev. Neurosci., 6: 234.Google Scholar
  74. Webster, H. F. de, Palkovits, C. G., Stoner, G. L., Favilla, D. E., Frail, D. E., Braun, P. E., 1983, Myelin-associated glycoprotein — electron microscopic immunocytochemical localization in compact developing and adult central nervous system myelin, J. Neurochem., 41: 1469–1479.CrossRefGoogle Scholar
  75. Wood, J. G. and Dawson, R. M. C., 1974, Some properties of a major structural glycoprotein of sciatic nerve, J. Neurochem., 22: 627–630.CrossRefGoogle Scholar
  76. Wiggins, R. C. and Morell, P., 1980, Phosphorylation and fucosylation of myelin protein in vitro by sciatic nerve from developing rats, J. Neurochem., 34: 627.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. Toews
    • 1
  • P. Morell
    • 1
  1. 1.Department of Biochemistry and Biological Sciences Research CenterUniversity of North Carolina, School of MedicineChapel HillUSA

Personalised recommendations