Myelin Basic Protein Gene Expression, Oligodendrocyte Metabolism and Myelin Stability in the MLD Mutant Mouse

  • J.-M. Matthieu
  • F. X. Omlin
  • J.-M. Roch
  • B. J. Cooper
Part of the NATO ASI Series book series (NSSA, volume 142)


Myelin-deficient (mld) is an autosomal recessive mutation in mice exhibiting a severe deficit in the synthesis of myelin basic protein (MBP). In order to understand the mechanisms involved in the regulation of MBP synthesis in these mutants, the amounts of MBP and MBP mRNA were measured in control, heterozygous and homozygous mld brains. Using in vitro translation of poly(A+) RNA in a cell-free system, in situ hybridization, and filter hybridization with a radiolabelled probe pMBP-1, the levels of MBP and MBP-specific mRNA were found to be very low but detectable in mld homozygotes and intermediate in heterozygotes. MBP specific mRNA and its translation products were of normal size. These results indicate that the mld mutation is expressed co-dominantly in heterozygotes and affects a cis-acting regulatory element controlling the MBP gene.

In the presence of low amounts of MBP, the myelin lamellae were poorly compacted and unstable. This instability was demonstrated by increased levels of cholesterol esters, the presence of degraded myelin-associated glycoprotein (dMAG), and fast turnover rates of MAG and sulfatides. In mld, oligodendrocytes accumulated inclusion bodies, vacuoles and rough endoplasmic reticulum. This material was heavily immunostained for MAG. Simultaneously, MAG and Wolfgram protein, two proteins present in uncompacted myelin sheath and paranodal loops exhibited increased rates of synthesis. These results suggest that the regulation of the synthesis of myelin constituents cannot proceed when a major myelin protein is missing.


Myelin Basic Protein Myelin Sheath Translation Product Myelin Protein Autosomal Recessive Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-M. Matthieu, J.-M. Roch, F.X. Omlin, J. Rambaldi, G. Almazan, and P.E. Braun, Myelin instability and oligodendrocyte metabolism in myelin-deficient (mld) mutant mice, J. Cell Biol., 103: 2673–2682 (1986).CrossRefGoogle Scholar
  2. 2.
    J.-M. Roch, M. Brown-Luedi, B. J. Cooper, and J.-M. Matthieu, Mice heterozygous for the mld mutation have intermediate levels of myelin basic protein mRNA and its translation products, Molec. Brain Res., 1: 137–144 (1986).CrossRefGoogle Scholar
  3. 3.
    D. P Doolittle and K. M. Schweikart, Myelin deficient, a new neurological mutant in the mouse, J. Heredity 68: 331 (1977).Google Scholar
  4. 4.
    F. Lachapelle, C. de Baecque, C. Jacque, J.-M. Bourre, A. Delassalle, D. Doolittle, J. J. Hauw, and N. Baumann, Comparison of morphological and biochemical defects of two probably allelic mutations of the mouse, myelin deficient (mld) and shiverer (shi), in: “Neurological Mutations Affecting Myelination, INSERM Symposium No 14” N. Baumann, ed., Elsevier/North-Holland Biomédical Press, Amsterdam, 27–32 (1980).Google Scholar
  5. 5.
    J. M. Bourre, C. Jacque, A. Delassalle, J. Nguyen-Legros, O. Dumont, F. Lachapelle, M. Raoul, C. Alvarez, and N. Baumann, Density profile and basic protein measurements in the myelin range of particulate material from normal developing mouse brain and from neurological mutants (Jimpy; Quaking; Trembler; Shiverer; and its mld allele) obtained by zonal centrifugation, J. Neurochem., 35: 458 (1980).CrossRefGoogle Scholar
  6. 6.
    A. Privat, C. Jacque, J.-M. Bourre, P. Dupouey, and N. Baumann, Absence of the major dense line in myelin of the mutant mouse “shiverer’, Neurosci. Lett. 12: 107 (1979).CrossRefGoogle Scholar
  7. 7.
    Y. Inoue, R. Nakamura, K. Mikoshiba, and Y. Tsukada, Fine structure of the central myelin sheath in the myelin deficient mutant Shiverer mouse, with special reference to the pattern of myelin formation by oligodendroglia, Brain Res. 219: 85 (1981).CrossRefGoogle Scholar
  8. 8.
    J.-M. Matthieu, H. Ginalski, R. L. Friede, S. R. Cohen, and D. P. Doolittle, Absence of myelin basic protein and major dense line in CNS myelin of the mld mutant mouse, Brain Res. 191: 278 (1980).CrossRefGoogle Scholar
  9. 9.
    J.-M. Matthieu, H. Ginalski-Winkelmann, and C. Jacque, Similarities and dissimilarities between two myelin deficient mutant mice, Shiverer and mld, Brain Res. 214: 219 (1981).CrossRefGoogle Scholar
  10. 10.
    J.-M. Matthieu, F. X. Omlin, H. Ginalski-Winkelmann, and B. J. Cooper, Myelination in the CNS of mld mutant mice: comparison between composition and structure, Develop. Brain Res. 13: 149 (1984).CrossRefGoogle Scholar
  11. 11.
    H. Ginalski-Winkelmann, G. Almazan, and J.-M. Matthieu, In vitro myelin basic protein synthesis in the PNS and CNS of myelin deficient (mld) mutant mice, Brain Res. 277: 386 (1983)CrossRefGoogle Scholar
  12. 12.
    X.-Y. Shen, S. Billings-Gagliardi, R. L. Sidman, and M. K. Wolf, Myelin deficient (shi mld) mutant allele: morphological comparison with shiverer (shi) allele on a B6C3 mouse stock, Brain Res. 360: 235 (1985).CrossRefGoogle Scholar
  13. 13.
    A. Roach, N. Takahashi, D. Pravtcheva, F. Ruddle, and L. Hood, Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice, Cell 42: 149 (1985).CrossRefGoogle Scholar
  14. 14.
    R. L. Sidman, C. S. Conover, and J. H. Carson, Shiverer gene maps near the distal end of chromosome 18 in the house mouse, Cytogenet. Cell Genet. 39: 241 (1985).CrossRefGoogle Scholar
  15. 15.
    D. F. Saxe, N. Takahashi, L. Hood, and M. I. Simon, Localization of the human myelin basic protein gene (MBP) to region 18q22-qter by in situ hybridization, Cytogenet. Cell Genet. 39: 246 (1985).CrossRefGoogle Scholar
  16. 16.
    F. X. Omlin, H. de F. Webster, C. G. Palkovits, and S. R. Cohen, Immuno-cytochemical localization of basic protein in major dense line regions of central and peripheral myelin, J. Cell Biol. 95: 242 (1982).CrossRefGoogle Scholar
  17. 17.
    P.-E. Braun, Molecular Organization of Mylein, in: “Myelin”, P. Morell, ed., Plenum Press, New York, 97 (1984).CrossRefGoogle Scholar
  18. 18.
    D. A. Kirschner, A. L. Ganser, and D. L. D. Caspar, Diffraction studies of molecular organization and membrane interactions in myelin, in: “Myelin”, P. Morell, ed., Plenum Press, New York, 51 (1984).Google Scholar
  19. 19.
    G. Almazan, H. Ginalski-Winkelmann, and J.-M. Matthieu, Myelin metabolism in a dysmyelinating mutant mouse (mld), Trans. Am. Soc. Neurochem. 14: 129 (Abstr.) (1983).Google Scholar
  20. 20.
    J.-M. Matthieu, Myelin basic protein and the stability of the multila-mellar myelin structure, Bull. Schwei. Akad. Med. Wiss. 101 (1982).Google Scholar
  21. 21.
    J.-M. Matthieu, H. Ginalski-Winkelmann, D. Johnson, P. Burgisser, R. H. Quarles, J. F. Poduslo, and R. Krstic, Composition and metabolism of CNS myelin from young mld mice, Trans. Am. Soc. Neurochem. 13: 215 (Abstr.) (1982).Google Scholar
  22. 22.
    F. X. Omlin and J.-M. Matthieu, Myelin-associated glycoprotein (MAG): Immunocytochemical localization in both oligodendrocytes and myelin loops of myelin deficient (mld) mutant mice, Soc. Neurosci. Abstr. 10: 949 (1984).Google Scholar
  23. 23.
    J.-M. Matthieu and F. X. Omlin, Myelin-associated glycoprotein in the CNS of myelin-deficient (mld) mutant mice. An immunochemical and immunocytochemical study, Trans. Am. Soc. Neurochem. 16: 139 (Abstr.) (1985).Google Scholar
  24. 24.
    M. Kimura, H. Inoko, M. Katsuki, A. Ando, T. Sato, T. Hirose, H. Takashima, S. Inayama, H. Okano, K. Takamatsu, K. Mikoshiba, Y. Tsukada, and I. Watanabe, Molecular genetic analysis of myelin-deficient mice: shiverer mutant mice show deletion in gene(s) coding for myelin basic protein, J. Neurochem. 44: 692 (1985).CrossRefGoogle Scholar
  25. 25.
    A. Roach, K. Boylan, S. Horvath, S. B. Prusiner, and L. E. Hood, Caracterization of cloned cDNA representing rat myelin basic protein: absence of expression in brain of shiverer mutant mice, Cell 34: 799 (1983).CrossRefGoogle Scholar
  26. 26.
    K. Mikoshiba, M. Yokoyama, Y. Inoue, K. Takamatsu, Y. Tsukada, and T. Nomura, Oligodendrocyte abnormalities in shiverer mouse mutant are determined in primary chimaeras. Nature 299: 357 (1982).CrossRefGoogle Scholar
  27. 27.
    J. Ulrich, J.-M. Matthieu, N. Herschkowitz, R. Kohler, and U. Heitz, Immunocytochemical investigations of murine leukodystrophies. A study of the mutants ‘jimpy’ (jp) and ‘myelin deficient’ (mld), Brain Res., 268: 267 (1983).CrossRefGoogle Scholar
  28. 28.
    C. Jacque, A. Delassalle, M. Raoul, and N. Baumann, Myelin basic protein deposition in the optic and sciatic nerves of dysmyelinating mutants quaking, jimpy, trembler, mld, and shiverer during development, J. Neurochem. 41: 1335 (1983).CrossRefGoogle Scholar
  29. 29.
    N. K. Zeller, M. J. Hunkeler, A. T. Campagnoni, J. Sprague, and R. A. Lazzarini, Characterization of mouse myelin basic protein messenger RNAs with a myelin basic protein cDNA clone, Proc. Nat. Acad. Sci. U.S.A. 81: 18 (1984).CrossRefGoogle Scholar
  30. 30.
    N. K. Zeller, T. N. Behar, M. E. Dubois-Dalcq, and R. A. Lazzarini, The timely expression of myelin basic protein gene in cultured rat brain oligodendrocytes is independent of continuous neuronal influences, J. Neurosci. 5: 2955 (1985).Google Scholar
  31. 31.
    C. W. Campagnoni, G. D. Carey, and A. T. Campagnoni, Synthesis of myelin basic proteins in the developing mouse brain, Arch. Biochem. Biophys. 190: 118 (1978).CrossRefGoogle Scholar
  32. 32.
    J.-M. Matthieu, G. Almazan, and T. V. Waehneldt, Intrinsic myelin proteins are normally snythesized in vitro in the myelin-deficient (mld) mutant mouse, Dev. Neurosci. 6: 246 (1984).CrossRefGoogle Scholar
  33. 33.
    K. Kristensson, N. K. Zeller, M. E. Dubois-Dalcq, and R. A. Lazzarini, Expression of myelin basic protein gene in the developing rat brain as revealed by in situ hybridization, J. Histochem. Cytochem. 34: 467 (1986).CrossRefGoogle Scholar
  34. 34.
    S. Sato, R. H. Quarles, and R. O. Brady, Susceptibility of the myelinassociated glycoprotein and basic protein to a neutral protease in highly purified myelin from human and rat brain, J. Neurochem. 39: 97 (1982).CrossRefGoogle Scholar
  35. 35.
    S. Sato, K. Yanagisawa, and T. Miyatake, Conversion of myelin-associated glycoprotein (MAG) to a smaller derivative by calcium activated neutral protease (CANP)-like enzyme in myelin and inhibition by E-64 analogue, Neurochem. Res. 9: 629 (1984).CrossRefGoogle Scholar
  36. 36.
    D. E. Frail and P. E. Braun, Two developmentally regulated messenger RNAs differing in their coding region may exist for the myelin-associated glycoprotein, J. Biol. Chem. 259: 14857 (1984).Google Scholar
  37. 37.
    F. de Ferra, H. Engh, L. Hudson, J. Kamholz, C. Puckett, S. Molineaux, and R. A. Lazzarini, Alternative splicing accounts for the four forms of myelin basic protein, Cell 43: 721 (1985).CrossRefGoogle Scholar
  38. 38.
    A. Mentaberry, M. Adesnik, M. Atchison, E. M. Norgard, F. Alvarez, D. D. Sabatini, and D. R. Colman, Small basic proteins of myelin from central and peripheral nervous systems are encoded by the same gene, Proc. Natl. Acad. Sci. USA 83: 1111 (1986).CrossRefGoogle Scholar
  39. 39.
    N. Takahashi, A. Roach, D. B. Teplow, S. B. Prusiner, and L. Hood, Cloning and characterization of the myelin basic protein gene from the mouse: one gene can encode both 14 kd and 18.5 kd MBPs by alternate use of exons, Cell 42: 139 (1985).CrossRefGoogle Scholar
  40. 40.
    J.-M. Matthieu and F. X. Omlin, Murine leukodystrophies as tools to study myelinogenesis in normal and pathological conditions, Neuropediatrics 15 Suppl.: 37 (1984).CrossRefGoogle Scholar
  41. 41.
    E. E. Golds and P. E. Braun, Organization of membrane proteins in the intact myelin sheath, J. Biol. Chem. 251: 4729 (1976).Google Scholar
  42. 42.
    J. F. Poduslo and P. E. Braun, Topographical arrangement of membrane proteins in the intact myelin sheath, J. Biol. Chem. 250: 1099 (1975).Google Scholar
  43. 43.
    A. Ganser and D. A. Kirschner, Myelin structure in the absence of basic protein in the shiverer mouse, in: “Neurological Mutation Affecting Myelination, INSERM Symposium No 14”, N. Baumann, ed., Elsevier/North Holland Biomedical Press, Amsterdam, 171 (1980).Google Scholar
  44. 44.
    H. Nagara, K. Suzuki, and J. Tateishi, Radial component of central myelin in shiverer mouse, Brain Res. 263: 336 (1983).CrossRefGoogle Scholar
  45. 45.
    W. T. Norton and W. Cammer, Isolation and characterization of myelin, in: “Myelin”, P. Morell, ed., Plenum Press, New York, 147 (1984).CrossRefGoogle Scholar
  46. 46.
    J. A. Benjamins and M. E. Smith, Metabilism of myelin, in: “Myelin”, P. Morell, ed., Plenum Press, New York, 225 (1984).CrossRefGoogle Scholar
  47. 47.
    E. Bradel and F. Prince, Cultured neonatal rat oligodendrocytes elaborate myelin membrane in the absence of neurons, J. Neurosci. Res. 9: 381 (1983).CrossRefGoogle Scholar
  48. 48.
    L. L. Sarliève, M. Fabre, J. Susz, and J.-M. Matthieu, Investigations on myelination in vitro: IV. “Myelin-like” or premyelin structures in cultures of dissociated brain cells from 14–15 day-old embryonic mice, J. Neurosci. Res. 10: 191 (1983).CrossRefGoogle Scholar
  49. 49.
    B. Guentert-Lauber, F. Monnet-Tschudi, F. X. Omlin, P. Favrod, and P. Honegger, Serum-free aggregate cultures of rat CNS glial cells: biochemical, immunocytochemical and morphological characterization, Dev. Neurosci. 7: 33 (1985).CrossRefGoogle Scholar
  50. 50.
    L. H. Rome, P. N. Bullock, F. Chiappelli, M. Cardwell, A. M. Adinolfi, and D. Swanson, Synthesis of a myelin-like membrane by oligodendrocytes in culture, J. Neurosci. Res. 15: 49 (1986).CrossRefGoogle Scholar
  51. 51.
    A.-L. Kerner and J. H. Carson, Shiverer*jimpy double mutant mice. I. Biochemical evidence for reciprocal intergenic suppression, Brain Res. 374: 45 (1986).CrossRefGoogle Scholar
  52. 52.
    A. Dautigny, M.-G. Mattei, D. Morello, P. M. Alliel, D. Pham-Dinh, L. Amar, D. Arnaud, D. Simon, J.-F. Mattei, J.-L. Guenet, P. Jolies, and P. Avner, The structural gene coding for myelin-associated proteolipid protein is mutated in jimpy mice, Nature 321: 867 (1986).CrossRefGoogle Scholar
  53. 53.
    M. V. Gardinier, P. L. Deininger, and W. B. Macklin, Myelin proteolipid mRNAs in normal and jimpy brain development, Trans. Am. Soc. Neurochem., 17: 109 (1986).Google Scholar
  54. 54.
    T. Inuzuka, I. D. Duncan, and R. H. Quarles, Myelin proteins in the CNS of “shaking pups”, Develop. Brain Res., 27: 43 (1986).CrossRefGoogle Scholar
  55. 55.
    A. Akowitz, K. Scheid, E. Barbarese, and J. H. Carson, A partial duplication of the myelin basic protein gene in mld mice, Trans. Am. Soc. Neurochem., 17: 108 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J.-M. Matthieu
    • 1
  • F. X. Omlin
    • 2
  • J.-M. Roch
    • 1
  • B. J. Cooper
    • 1
  1. 1.Laboratoire de Neurochimie, Service de PédiatrieCentre Hospitalier Universitaire VaudoisLausanneSwitzerland
  2. 2.Institut d’Histologie et d’EmbryologieUniversité de LausanneLausanneSwitzerland

Personalised recommendations