Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 142))

  • 43 Accesses

Abstract

The myelin sheath is formed by the compaction of multiple layers of cell membrane derived from either oligodendroglial or Schwann cells. The composition of myelin differs, however, from the composition of most other cell surface membranes in the high proportion of lipid to protein. As in other cell membranes, these lipids include cholesterol, phospholipids and glycolipids but in the brain the glycolipid galactocerebroside is found only in myelin and oligodendrocytes. Galactocerebroside represents some 20% of the total dry weight of myelin, and 6% of the dry weight of the human brain. The protein content of myelin is also distinctive in that it contains not only less protein than other cell membranes but fewer types of proteins. In CNS myelin two proteins predominate: myelin basic protein and proteolipid protein, together comprising approximately 80% of the total protein (reviewed in, Morell and Norton, 1980; and Norton and Cammer, 1984). Both are thought to have structural roles. In view of its cationic properties, myelin basic protein is thought to play a role in the tight compaction of the inner membrane and, because of its solubility in organic solvents, proteolipid protein is thought to organize the lipid bilayer. Other proteins present in the sheath have enzymic activity, and glycoproteins may play an important role in axon-myelin recognition and interaction (Sternberger et al., 1979; Itoyama et al., 1980). In the peripheral nervous system, the proportion of the various lipids is similar but the protein content is different. The P0 protein accounts for 55% of the total myelin protein, the P1 protein (probably identical to MBP) is present in small amounts and the P2 protein (also a basic protein) is unique to the peripheral nervous system (reviewed by Lees and Brostoff, 1984). The complexity of the immunological responses to these antigens has recently been reviewed by Brostoff (1984). In this paper we will address the mechanism by which these responses might lead to primary demyelination in the inflammatory demyelinating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvord, E. C. Jr., Shaw, C. M., Hruby, S., and Sires, L. R., 1980, Chronic relapsing experimental allergic encephalomyelitis induced in monkeys with myelin basic protein, J. Neuropathol. Exp. Neurol., 39: 338.

    Article  Google Scholar 

  • Banik, N. L., 1979, The degradation of myelin basic protein by serum proteinase in experimental allergic encephalomyelitis and control rats, Neurosci. Lett., 11: 303.

    Article  Google Scholar 

  • Banik, N. L., Gohil, K. and Davison, A. N., 1976, The action of snake venom, phospholipase A, and trypsin on purified myelin in vitro, Biochem. J., 159: 273.

    Google Scholar 

  • Bhakdi, S. and Tranum-Jensen, J., 1983, Membrane damage by comlement, Biochim. Biophys. Acta, 739: 343.

    Google Scholar 

  • Bornstein, M. B., Miller, A. I., Teitelbaum, D., Arnon, R., and Sela, M., 1982, Multiple sclerosis: trial of a synthetic polypeptide. Ann. Neurol., 11: 317.

    Article  Google Scholar 

  • Brosnan, C. F., Stoner, G. L., Bloom, B. R., and Wisniewski, H. M., 1977, Studies on demyelination by activated lymphocytes in the rabbit eye. II. Antibody-dependent cell-mediated demyelination. J. Immunol., 118: 2103.

    Google Scholar 

  • Brosnan, C. F., Cammer, W., Bloom, B. R., and Norton, W. T., 1980a, Proteinase inhibitors suppress the development of EAE. Nature (London), 285: 235.

    Article  Google Scholar 

  • Brosnan, C. F., Cammer, W., Bloom, B. R., and Norton, W. T., 1980b, Initiation of primary demyelination in vivo by a plasminogen activator (urokinase). J. Neuropathol. Exper. Neurol., 39: 344.

    Article  Google Scholar 

  • Brosnan, C. F., Bloom, B. R., and Bornstein, M. B., 1981, The effect of macrophage depletion on the expression of EAE in the Lewis rat, J. Immunol., 126: 614.

    Google Scholar 

  • Brosnan, C. F., Traugott, U., and Raine, C. S., 1983, Analysis of Humoral and Cellular Events and the Role of Lipid Haptens During CNS Demyelination, Acta Neuropathol., Suppl. IX: 59.

    Article  Google Scholar 

  • Brostoff, S. W., 1982, Immunological responses to myelin, in: “Myelin”, P. Morell, ed., Plenum, New York.

    Google Scholar 

  • Cambi, F., Lees, M. B., Williams, R. M., and Macklin, W. B., 1972, Chronic experimental allergic encephalomyelitis produced by bovine proteolipid apoprotein: immunological studies in rabbits, Ann. Neurol., 13: 303.

    Article  Google Scholar 

  • Cammer, W., Bloom, B. R., Norton, W. T., and Gordon, S., 1978, Degradation of basic protein in myelin by neutral proteases secreted by stimulated macrophages: a possible mechanism of inflammatory demyelination, Proc. Natl. Acad. Sci. USA, 75: 1554.

    Article  Google Scholar 

  • Cammer, W., Brosnan, C. F., Basile, C., Bloom, B. R., and Norton, W. T., 1986, Hypothetical mechanism of inflammatory demyelination: Evidence for participation of complement plus macrophage-secreted plasminogen activator, Brain Research., 364: 91.

    Article  Google Scholar 

  • Campbell, B., Vogel, P. J., Fisher, E., and Lorenz, R., 1973, Myelin Basic protein administration in multiple sclerosis, Arch. Neurol. (Chicago), 29: 10.

    Article  Google Scholar 

  • Cyong, J-C., Within, S. S., Rieger, B., Barbarese, E., Good, R. A., and Day, N. K., 1982, Antibody-independent complement activation by myelin via the classical complement pathway, J. Exp. Med., 155: 587.

    Article  Google Scholar 

  • Dubois-Dalcq, M., Niedeck, B., and Buyse, M., 1970, Action of anticerebroside sera on myelinated nervous tissue cultures: demyelination of cerebellum cultures, Pathol. Eur., 5: 331.

    Google Scholar 

  • Folch-Pi, J. and Lees, M. B., 1951, Proteolipids, a new type of tissue lipoproteins: their isolation from brain, J. Biol. Chem., 191: 807.

    Google Scholar 

  • Gonsette, R. E., Demonthy, L., and Delmotte, P., 1977, Failure of basic protein therapy in multiple sclerosis, J. Neurol., 216: 27.

    Article  Google Scholar 

  • Imagawa, D. K., Osifchin, N. E., Paznekas, W. A., Shin, M. L., and Mayer, M. M., 1983, Consequences of cell membrane attack by complement: release of arichidonate and formation of inflammatory derivatives, Proc. Natl. Acad. Sci. USA, 80: 6647.

    Article  Google Scholar 

  • Itoyama, Y., Sternberger, N. H., Webster, de F. H., Quarles, R. H., Cohen, S. R., and Richardson, E. P., Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions, Ann. Neurol., 7: 167.

    Google Scholar 

  • Lampert, P. W., 1965, Demyelination and remyelination in experimental allergic encephalomyelitis; further electron microscopic observations, J. Neuropathol. Exp. Neurol., 24: 371.

    Article  Google Scholar 

  • Lees, M. B. and Brostoff, S. W., 1984, Proteins of myelin, in: “Myelin”, P. Morell, ed., Plenum, New York, p. 197.

    Chapter  Google Scholar 

  • Liu, W. T., Vanguri, P., and Shin, M. L., 1983, Studies on demyelination in vitro: the requirement of membrane attack components of the complement system, J. Immunol., 131: 778.

    Google Scholar 

  • London, Y., Demel, R. A., Geurts van Kessel, W. S. M., Vossenberg, F. G. A., and Van Deenen, L. L. M., 1973, The protection of A1 myelin basic protein against the action of proteolytic enzymes after interaction of the protein with lipids of the air-water interface, Biochim. Biophys. Acta, 307: 478.

    Article  Google Scholar 

  • McFarlin, D. E. and McFarland, H. F., 1982, Multiple Sclerosis, N.E.J. Med., 307: 1183 and 1246.

    Article  Google Scholar 

  • Mokhtarian, F., McFarlin, D. E., Raine, C. S., 1984, Adoptive transfer of myelin basic protein sensitized cells produces chronic relapsing demyelinating disease in mice, Nature 39: 356.

    Article  Google Scholar 

  • Moore, G. R. W., Traugott, U., Farooq, M., Norton, W. T., and Raine, C. S., 1984, Experimental autoimmune encephalomyelitis: augmentation of demyelination by different myelin lipids, Lab. Invest., 51: 416.

    Google Scholar 

  • Morell, P. and Norton, W. T., 1980, Myelin, Science, 242: 88.

    Google Scholar 

  • Norton, W. T., Cammer, W.., Brosnan, C. F., and Bloom, B. R., 1981, The role of macrophage secretion products in inflammatory demyelination, in: “New approaches to nerve and muscle disorders: basic and applied contributions, A. D. Kidman, J. K. Tomkins, and R. A. Westerman, eds., Excerpta Medica, Amsterdam, p. 265.

    Google Scholar 

  • Norton, W. T. and Cammer W. T., 1984, Isolation and characterization of myelin, in: “Myelin”, P. Morell, ed., Plenum, New York, p. 147.

    Chapter  Google Scholar 

  • Paterson, P. Y., 1960, Transfer of allergic encephalomyelitis in rats by means of lymph node cells, J. Exp. Med., 111: 119.

    Article  Google Scholar 

  • Prineas, J. W., Known, E. E., Cho, E-S., and Scharer, L. R., 1984, Continual breakdown and regeneration of myelin in progressive multiple sclerosis plaques, in: “Multiple sclerosis: experimental and clinical aspects”, L. Scheinberg and C. S. Raine, eds., Ann.N.Y. Acad.Sci., 436: 11.

    Google Scholar 

  • Raine, C. S., 1984, The neuropathology of myelin disease, in: “Myelin”, P. Morell, ed., Plenum, New York, p. 259.

    Chapter  Google Scholar 

  • Raine, C. S., 1984, Analysis of autoimmune demyelination: Its impact upon multiple sclerosis, Lab. Invest., 50: 608.

    Google Scholar 

  • Raine, C. S., Johnson, A. B., Marcus, D. M., Suzuki, A., and Bornstein, M. B., 1981, Demyelination in vitro: absorption studies demonstrate that galactocerebroside is a major target, J. Neurol. Sci., 52: 117.

    Article  Google Scholar 

  • Raine, C. S. and Traugott, U., 1982, Hypothesis: the pathogenesis and therapy of MS is based upon the requirement of a combinantion of myelin antigen for autoimmune demyelination, J. Neuroimmunol., 2: 83.

    Article  Google Scholar 

  • Raine, C. S. and Traugott, U., 1983, Chronic relapsing experimental autoimmune encephalomyelitis: ultrastructure of the central nervous system of animals treated with combinations of myelin components, Lab. Invest., 48: 275.

    Google Scholar 

  • Raine, C. S. and Traugott, U., 1984, Therapeutic trials in relapsing autoimmune demyelination, in: “Neuroimmunology”, Serono symposium, P. Behan, F. Spreafico, ed., Raven Press, New York, p. 325.

    Google Scholar 

  • Saida, T., Saida, K., Silberberg, D. H., and Brown, M. J., 1978, Transfer of demyelination by intraneural injection of experimental allergic neuritis serum, Nature, 272: 639.

    Article  Google Scholar 

  • Saida, T., Saida, K., Dorfman, S., Silberberg, D. H., Sumner, A. J., Manning, M., Lisak, R. P., and Brown, M. J., 1979, Experimental allergic neuritis induced by sensitization with galactocerebroside, Science, 204: 1103.

    Article  Google Scholar 

  • Salk, J., Romine, J. S., Westall, F. C., and Wiederholt, W. C., 1980, Myelin basic protein studies in experimental allergic encephalomyelitis and multiple sclerosis: a summary with theoretical consideration of multiple sclerosis etiology, in: “The Suppression of Experimental Allergic Encephalomyelitis and Multiple Sclerosis, A. N. Davison and M. L. Cuzner, Academic Press, New York.

    Google Scholar 

  • Silverman, B. A., Carney, D. F., Johnston, C. A., Vanguri, P., and Shin, M. L., 1984, Isolation of membrane attack complex of complement from myelin membranes treated with serum complement, J. Neurochem., 42: 1024.

    Article  Google Scholar 

  • Smith, M. E., 1977, The role of proteolytic enzymes in demyelination in experimental allergic encephalomyelitis, Neurochem. Res., 2: 233.

    Article  Google Scholar 

  • Smith, M. E., 1979, Neutral protease activity in lymphocytes of Lewis rats with acute experimental allergic encephalomyelitis, Neurochem. Res., 4: 689.

    Article  Google Scholar 

  • Smith, M. E., 1980, Proteolytic enzymes in demyelination, Progress in clinical and biological research, 39: 1.

    Google Scholar 

  • Smith, M. E., Chow, S. H., and Rolph, R. H., 1981, Partial purification and characterization of neutral proteases in lymph nodes of rats with experimental allergic encephalomyelitis, Neurochem. Res., 6: 901.

    Article  Google Scholar 

  • Sternberger, N. H., Quarles, R., Itoyama, Y., Webster, H. deF., 1979, Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of developing rat, Proc. Nat. Acad. Sci., 76: 1510.

    Article  Google Scholar 

  • Traugott, U., Stone, S. H., and Raine, C. S., Chronic relapsing experimental allergic encephalomyelitis: correlations of circulating lymphocyte fluctuations with disease activity in suppressed and unsuppressed animals, J. Neurol. Sci., 41: 17.

    Google Scholar 

  • Traugott, U., Shevach, E., Chiba, J., Stone, S. H., and Raine, C. S., 1982, Chronic relapsing experimental allergic encephalomyelitis: identification and dynamics of T and B cells within the central nervous system, Cell Immunol., 68: 261.

    Article  Google Scholar 

  • Traugott, U., Stone, S. H., and Raine, C. S., 1982, Chronic relapsing experimental allergic encephalomyelitis: treatment with combinations of myelin components promotes clinical and structural recovery, J. Neurol. Sci., 56: 65.

    Article  Google Scholar 

  • Trotter, J. and Smith, M. E., 1984, Macrophage mediated demyelination: the role of phospholipids and antibody, in: “EAE, a good model for MS?”, E. C. Alvord, M. W. Kies and A. J. Suckling, eds., Alan Liss, New York, p. 55.

    Google Scholar 

  • Vanguri, P., Koski, C. L., Silverman, B., and Shin, M. L., 1982, Complement activation by isolated myelin: activation of the classical pathway in the absence of myelin-specific antibodies, Proc. Soc. Natl. Acad. Sci., 79: 3290.

    Article  Google Scholar 

  • Waksman, B. H., 1959, Evidence favoring delayed sensitization as the mechanism underlying experimental allergic encephalomyelitis, in: “Allergic Encephalomyelitis”, M. W. Kies and E. C. Alvord, eds., Charles C. Thomas, Springfield, MA, p. 419.

    Google Scholar 

  • Wray, S. H., Cogan, D. H., and Arnason, B. G. W., 1974, An in vivo model of demyelination of intraocular myelin in the rabbit, Proc. Assoc. Res. Vis. Ophthalmol., April issue, abstract, p. 260.

    Google Scholar 

  • Yamura, T., Namikawa, T., Endoh, M., Kunishita, T., and Tabira, T., 1986, Experimental autoimmune encephalomyelitis induced by proteolipid apoprotein, J. Neuroimmunol., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Brosnan, C.F., Cammer, W., Traugott, U., Norton, W.T., Raine, C.S. (1987). Myelin Antigens and Demyelination. In: Crescenzi, G.S. (eds) A Multidisciplinary Approach to Myelin Diseases. NATO ASI Series, vol 142. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0354-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0354-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0356-6

  • Online ISBN: 978-1-4757-0354-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics