Antigenic and Functional Characteristics of a Bipotential Glial Progenitor Cell in Rat Cerebellar Primary Cultures

  • G. Levi
  • V. Gallo
  • F. Aloisi
  • D. Mercanti
  • M. T. Ciotti
Part of the NATO ASI Series book series (NSSA, volume 142)


The processes of repair and remyelination in the CNS depend, among others, on the availability of cells of the oligodendrocytic lineage capable of proliferating and of expressing a differentiated oligodendroglial phenotype. Such cells could be either mature oligodendrocytes (1) or oligodendrocyte precursors (see ref. 2 for review), which might respond to growth factors released in the lesioned brain (3) or to T-cell derived lymphokines (4). The existence of oligodendrocyte progenitor cells in the mature brain has been object of long debates, which can be largely attributed to the difficulty of identifying these cells when they still lack cell-type-specific markers such as myelin basic protein or galactocerebroside (see ref. 2). Recently, bipotential oligodendrocyte-type-2 astrocyte precursors (5) have been isolated from the central white matter of adult rats and allowed to differentiate in vitro (6). This finding strongly suggests that undifferentiate oligodendrocyte precursors do exist in the mature CNS.


Glial Fibrillary Acidic Protein Chondroitin Sulfate Kainic Acid Proteoglycan Chondroitin Sulfate Mature Oligodendrocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. K. Ludwin, Proliferation of mature oligodendrocytes after trauma to the central nervous system, Nature, 308: 274 (1984).CrossRefGoogle Scholar
  2. 2.
    P. Wood and R. P. Bunge, The biology of the oligodendrocyte, in: “Oligodendroglia,” W. T. Norton, ed., Plenum Press, New York (1984).Google Scholar
  3. 3.
    D. Giulian, R. L. Allen, T. J. Baker, and Y. Tomozawa, Brain peptides and glial growth. I. Glia-promoting factors as regulators of gliogenesis in the developing and injured central nervous system, J. Cell Biol., 102: 803 (1986).CrossRefGoogle Scholar
  4. 4.
    E. N. Benveniste and J. E. Merrill, Stimulation of oligodendroglial proliferation and maturation by interleukin-2, Nature, 321: 610 (1986).CrossRefGoogle Scholar
  5. 5.
    M. C. Raff, R. H. Miller, and M. Noble, A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium, Nature, 303: 390 (1983).CrossRefGoogle Scholar
  6. 6.
    C. ffrench Constant and M. C. Raff, Proliferating bipotential glial progenitor cells in adult rat optic nerve, Nature, 319: 499 (1986).CrossRefGoogle Scholar
  7. 7.
    G. Levi, V. Gallo, and M. T. Ciotti, Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and “neuron-like”-aminobutyric acid transport, Proc. Natl. Acad. Sci. USA, 83: 1504 (1986).CrossRefGoogle Scholar
  8. 8.
    V. Gallo, M. T. Ciotti, F. Aloisi, and G. Levi, Developmental features of rat cerebellar neural cells cultured in a chemically defined medium, J. Neurosci. Res., 15: 289 (1986).CrossRefGoogle Scholar
  9. 9.
    M. C. Raff, E. R. Abney, J. Cohen, R. Lindsay, and M. Noble, Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics, J. Neurosci., 3: 1289 (1983).Google Scholar
  10. 10.
    A. Bignami, L. F. Eng., D. Dahl, and C. T. Uyeda, Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence, Brain Res., 43: 429 (1972).CrossRefGoogle Scholar
  11. 11.
    L. F. Eng and S. J. De Armond, Immunocytochemical studies of astrocytes in normal development and disease, Advanc. Cell. Neurobiol., 3: 145 (1982).Google Scholar
  12. 12.
    G. S. Eisenbarth, F. S. Walsh, and M. Niremberg, Monoclonal antibody to a plasma membrane antigen of neurones, Proc. Natl. Acad. Sci. USA, 76: 4913 (1979).CrossRefGoogle Scholar
  13. 13.
    G. P. Wilkin, G. Levi, S. Johnstone, and P. N. Riddle, Cerebellar astroglial cells in primary culture: expression of different morphological appearances and differential ability to take up H-D-aspartate and 3H-GABA, Dev. Brain Res., 10: 265 (1983).CrossRefGoogle Scholar
  14. 14.
    G. Levi, G. P. Wilkin, M. T. Ciotti, and S. Johnstone, Enrichment of differentiated, stellate astrocytes in cerebellar interneuron cultures as studied by GFAP immunofluorescence and autoradiographic uptake patterns of H-D-aspartate and 3H-GABA, Dev. Brain Res., 10: 227 (1983).CrossRefGoogle Scholar
  15. 15.
    S. R. Johnstone, G. Levi, G.P. Wilkin, A. Schneider, and M. T. Ciotti, Subpopulations of rat cerebellar astrocytes in primary culture: morphology, cell surface antigens and H-GABA transport, Dev. Brain Res., 24: 63 (1986).CrossRefGoogle Scholar
  16. 16.
    R. Curtis, J. Cohen, J. Fok-Seang, M. R. Hanley, N. A. Gregson, R. Reynolds, and G. P. Wilkin, Use of antibodies against GD3 gangliosides galactocerebrosides and glial fibrillary acidic protein follow the development of macroglial cells in rat cerebellum, submitted.Google Scholar
  17. 17.
    J. E. Goldman, S. S. Geier, and M. Hirano, Differentiation of astrocytes and oligodendrocytes from germinal matrix cells in primary culture, J. Neurosci., 6: 52 (1986).Google Scholar
  18. 18.
    J. E. Goldman, M. Hirano, R. K. Yu, and T. N. Seyfried, GD3 ganglioside is a glycolipid characteristic of immature neuroectodermal cells, J. Neuroimmunol., 7: 179 (1984).CrossRefGoogle Scholar
  19. 19.
    M. C. Raff, R. Mirsky, K. L. Fields, R. P. Lisak, S. H. Dorfman, D. H. Silberberg, N. A. Gregson, S. Leibowitz, and M. C. Kennedy, Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture, Nature, 274: 813 (1978).Google Scholar
  20. 20.
    S. Temple and M. C. Raff, Differentiation of a bipotential glial progenitor cell in single cell microculture, Nature, 313: 223 (1985).CrossRefGoogle Scholar
  21. 21.
    M. C. Raff, E. R. Abney, and J. Fok-Seang, Reconstitution of a developmental clock in vitro: A critical role for astrocytes in the timing of oligodendrocyte differentiation, Cell, 42: 61 (1985).CrossRefGoogle Scholar
  22. 22.
    G. Levi, V. Gallo, G.P. Wilkin, and J. Cohen, Astrocytes and glial precursors in the rat cerebellum, in: “Dynamic properties of glial cells: Cellular and molecular aspects” T. Grisar, L. Hertz, W. T. Norton, M. Sensenbrenner, eds., Pergamon Press, Oxford (1986).Google Scholar
  23. 23.
    N. G. Bowery, G. P. Jones, and M. J. Neal, Selective inhibition of neuronal GABA uptake by cis-1-3-aminocyclohexane carboxylic acid, Nature, 264: 281 (1976).CrossRefGoogle Scholar
  24. 24.
    L. L. Iversen and J. S. Kelly, Uptake and metabolism of γ-aminobutyric acid by neurones and glial cells, Biochem. Pharmacol., 24: 933 (1975).CrossRefGoogle Scholar
  25. 25.
    M. Schachner, Cell type-specific surface antigens in the mammalian nervous system, J. Neurochem., 39: 1 (1982).CrossRefGoogle Scholar
  26. 26.
    J. E. Bottenstein and G. M. Sato, Growth of a rat neuroblastoma cell line in serum-free supplemented medium, Proc. Natl. Acad. Sci. USA, 76: 514 (1979).CrossRefGoogle Scholar
  27. 27.
    S. Carbonetto, The extracellular matrix of the nervous system, Trends Neurosci., 7: 382 (1984).CrossRefGoogle Scholar
  28. 28.
    P. Liesi, T. Kirkwood, and A. Vaheri, Fibronectin is expressed by astrocytes cultured from embryonic and early postnatal rat brain, Exp. Cell. Res., 163: 175 (1986).CrossRefGoogle Scholar
  29. 29.
    D. A. Aquino, R. U. Margolis, and R. K. Margolis, Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. I. Adult brain, retina, and peripheral nerve, J. Cell Biol., 99: 1117 (1984).CrossRefGoogle Scholar
  30. 30.
    R. U. Margolis and R. K. Margolis, Distribution and metabolism of mucopolysaccarides and glycoproteins in neuronal perikarya, astrocytes and oligodendrocytes, Biochemistry, 13: 2849 (1974).CrossRefGoogle Scholar
  31. 31.
    D. A. Aquino, R. U. Margolis, and R. K. Margolis, Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue, II. Studies in developing brain, J. Cell Biol., 99: 1130 (1984).CrossRefGoogle Scholar
  32. 32.
    A. Bertolotto, L. Palmucci, A. Gagliano, T. Mongini, and G. Tarone, Immunohistochemical localization of chondroitin sulfate in normal and pathological human muscle, J. Neurol. Sci., 73: 233 (1986).CrossRefGoogle Scholar
  33. 33.
    V. Gallo, A. Bertolotto, and G. Levi, The proteoglycan chondroitin sulfate is present in a subpopulation of cultured astrocytes and in their precursors, Dev. Biol., (1987) in press.Google Scholar
  34. 34.
    V. Gallo, R. Suergiu, and G. Levi, Kainic acid stimulates GABA release from a subpopulation of cerebellar astrocytes, Eur. J. Pharmacol., 133: 319 (1986)CrossRefGoogle Scholar
  35. 35.
    S. K. Ludwin, Reaction of oligodendrocytes and astrocytes to trauma and implantation. A combined autoradiographic and immunohistochemical study, Lab. Invest., 52: 20 (1985).Google Scholar
  36. 36.
    S. K. Ludwin, An autoradiographic study of cellular proliferation in remyelination of the central nervous system, Am. J. Pathol., 95: 683 (1979).Google Scholar
  37. 37.
    D. Mercanti, E. Luzzatto, M. T. Ciotti, and G. Levi, Mitogenic effect of a human placental factor on astrocytes and glial precursors, Exp. Cell Res., 168: 182 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • G. Levi
    • 1
  • V. Gallo
    • 1
  • F. Aloisi
    • 1
  • D. Mercanti
    • 2
  • M. T. Ciotti
    • 2
  1. 1.Laboratoria di Fisiopatologia di Organo e SistemaIstituto Superiore di SanitàRomaItaly
  2. 2.Istituto di Biologia Cellulare CNRRomaItaly

Personalised recommendations