Myelinogenesis in Primary Cultures

  • L. L. Sarliève
Part of the NATO ASI Series book series (NSSA, volume 142)


The formation and growth of myelin sheaths is a prominent part of neural development. Periods of age of accelerated development that are characterized by increased sensibility and external environmental influences have been identified during brain development (1). For example, in rat and mouse, the critical period during which thyroid hormones influence brain development is associated, among other events, with rapid myelinogenesis which occurs in both species during the tenth and 30th day after birth (2). During this period, striking morphological and biochemical changes have been described. The biochemical parameters which seem best to measure this temporal changes are the enzymes and compounds most closely associated with myelination. Cerebrosides (3,4), galactosyl glycerol lipids (5), sulfatides (3), sulfogalactosyl glycerol lipids (6), and the enzymes catalyzing their synthesis (5, 7–9,6) the myelin basic protein (10, 11), myelin proteolipid protein (PLP) (12,13) or a synthetic polypeptide composed of the C-terminal amino acids of the PLP sequence (14), Wolfgram protein (10), 2′, 3′-cyclicnucleotide phosphohydrolase (CNP) (15) and pH 7.2 cholesterol ester hydrolase (16) are very useful molecular markers of myelination (for an extensive review, see Ref. 17).


Myelin Basic Protein Embryonic Mouse Myelin Formation Cholesterol Ester Hydrolase Glial Cell Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Davison and J. Dobbing, The developing brain, in: “Applied Neurochemistry”, A. N. Davison and J. Dobbing, eds., Contemporary Neurology Series, F. A. Davis Company, Philadelphia (1968).Google Scholar
  2. 2.
    J. A. Benjamins and G. M. McKhann, Development, regeneration and aging of the brain, in: “Basic Neurochemistry”, 3rd Edition, G. J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds., Little, Brown and Company, Boston (1981).Google Scholar
  3. 3.
    M. A. Wells and J. C. Dittmer, Comprehensive study of the postnatal changes in the concentration of the lipids of developing rat brain, Biochemistry, 6: 3169–3175 (1967).CrossRefGoogle Scholar
  4. 4.
    B. Zalc, M. Monge, P. Dupouey, J. J. Haw, and N. A. Baumann, Immuno-histochemical localization of galactosyl-and sulfogalactosyl ceramide in the brain of the 30-day-old mouse, Brain Res., 211:341: 354 (1981).Google Scholar
  5. 5.
    T. Inoue, D. S. Deshmukh, and R. A. Pieringer, The association of the galactosyl diglycerides of brain with myelination, J. Biol. Chem., 246: 5688–5694 (1971).Google Scholar
  6. 6.
    J. Pieringer, G. Subba Rao, P. Mandel, and R. A. Pieringer, The association of the sulphogalactosyl-glycerolipid of rat brain with myelination, Biochem. J., 166: 421–428 (1977).Google Scholar
  7. 7.
    N. M. Neskovic, L. L. Sarliève, and P. Mandel, Biosynthesis of glyco-lipids in myelin deficient mutants: brain glycosyltransferases in Jimpy and Quaking mice, Brain Res., 42: 147–157 (1972).CrossRefGoogle Scholar
  8. 8.
    N. M. Neskovic, G. Roussel, and J. L. Nussbaum, UDPgalactose: ceramide galactosyltransferase of rat brain: a new method of purification and production of specific antibodies, J. Neurochem., 47: 1412–1418 (1986).CrossRefGoogle Scholar
  9. 9.
    L. L. Sarliève, N. M. Neskovic, G. Rebel, and P. Mandel, Some properties of brain PAPS-cerebroside sulphotransferase in Jimpy and Quaking mice, Neurobiology, 2: 70–82 (1972).Google Scholar
  10. 10.
    G. Roussel and J. L. Nussbaum, Comparative localization of Wolfgram Wl and myelin basic protein in the rat brain during ontogenesis, Histochem. J., 13: 1029–1047 (1981).CrossRefGoogle Scholar
  11. 11.
    P. E. Braun, Molecular organization of myelin, in: “Myelin”, 2nd edition, P. Morell, ed., Plenum Press, New York (1984).Google Scholar
  12. 12.
    J. L. Nussbaum and G. Roussel, Immunocytochemical demonstration of the transport of myelin proteolipids through the Golgi apparatus, Cell Tissue Res., 234: 547–559 (1983).CrossRefGoogle Scholar
  13. 13.
    E. Trifilieff, B. Luu, J. L. Nussbaum, G. Roussel, A. Espinosa de los Monteros, J. M. Sabatier and J. Van Rietschoten, A specific immunological probe for the major myelin proteolipid: confirmation of a deletion in DM-20, FEBS Lett., 198: 235–239 (1986).CrossRefGoogle Scholar
  14. 14.
    J. L. Nussbaum, G. Roussel, E. Wunsch, and P. Jolies, Site-specific antibodies to rat myelin proteolipids directed against the C-terminal hexapeptide, J. Neurol. Sci., 68: 89–100 (1985).CrossRefGoogle Scholar
  15. 15.
    T. Kurihara, J. L. Nussbaum, and P. Mandel, 2′, 3′-cyclic nucleotide 3′-phosphohydrolase in brains of mutant mice with deficient myelination, J. Neurochem., 17: 993–997 (1970).CrossRefGoogle Scholar
  16. 16.
    Y. Eto and K. Suzuki, Cholesterol ester metabolism in rat brain. A cholesterol ester hydrolase specifically localized in the myelin sheath, J. Biol. Chem., 248: 1986–1991 (1973).Google Scholar
  17. 17.
    W. T. Norton and W. Cammer, Isolation and characterization of myelin, in: “Myelin”, 2nd edition, P. Morell, ed., Plenum Press, New York.Google Scholar
  18. 18.
    R. Balasz, B. W. L. Brooksbank, A. J. Patel, A. L. Johnson, and D. A. Wilson, Incorporation of (35S) sulfate into brain constituents during development and the effects of thyroid hormone on myelination, Brain Res., 30: 273–293 (1971).CrossRefGoogle Scholar
  19. 19.
    T. J. Flynn, D. S. Deshmukh, and R. A. Pieringer, Effects of altered thyroid function on galactosyl diacylglycerol metabolism in myelinating rat brain, J. Biol. Chem., 252: 5864–5870 (1977).Google Scholar
  20. 20.
    J. Legrand, Hormones thyroidiennes et maturation du système nerveux, J. Physiol. Paris, 78: 603–652 (1982–1983).Google Scholar
  21. 21.
    L. L. Sarliève, R. Bouchon, C. Koehl, and N. M. Neskovic, Cerebroside and sulfatide biosynthesis in the brain of Snell Dwarf mouse: effects of thyroxine and growth hormone in the early postnatal period, J. Neurochem., 40: 1058–1062 (1983).CrossRefGoogle Scholar
  22. 22.
    T. Noguchi, T. Sugisaki, I. Satoh, and M. Kudo, Partial restoration of cerebral myelination of the congenitally hypothyroid mouse by parenteral or breast milk administration of thyroxine, J. Neurochem., 45: 1419–1426 (1985).CrossRefGoogle Scholar
  23. 23.
    J. Nunez, Microtubules and brain development: the effects of thyroid hormones, Neurochem. Int., 7: 959–968 (1985).CrossRefGoogle Scholar
  24. 24.
    Y. Sakamoto, Y. Oomura, H. Kita, S. Shibata, S. Suzuki, T. Kuzuya, and S. Yoshida, Insulin content and insulin receptors in the rat brain. Effect of fasting and streptozotocin treatment, Biomed. Res., 1: 334–340 (1980).Google Scholar
  25. 25.
    A. Sena, L. L. Sarliève, and G. Rebel, Brain myelin of genetically obese mice, J. Neurol. Sci., 68: 233–244 (1985).CrossRefGoogle Scholar
  26. 26.
    A. Vernadakis and B. Culver, Neural tissue culture: a biochemical tool, in: “Biochemistry of Brain”, S. Kumar, ed., Pergamon Press, Oxford (1980).Google Scholar
  27. 27.
    S. E. Pfeiffer, Oligodendrocyte development in culture systems, in: “Oligodendroglia”, Advances in Neurochem., Vol. 5, W. T. Norton, ed., Plenum Press, New York (1984).Google Scholar
  28. 28.
    E. R. Peterson and M. R. Murray, Myelin sheath formation in cultures of avian spinal ganglion, Am. J. Anat., 96: 319–355 (1955).CrossRefGoogle Scholar
  29. 29.
    M. B. Bornstein and M. R. Murray, Serial observations on patterns of growth, myelin formation, maintenance and degeneration in cultures of new-born rat and kitten cerebellum, J. Biophys. Biochem. Cytol., 4: 499–504 (1958).CrossRefGoogle Scholar
  30. 30.
    K. Bradbury and C. E. Lumsden, The chemical composition of myelin in organ cultures of rat cerebellum, J. Neurochem., 32: 145–154 (1979).CrossRefGoogle Scholar
  31. 31.
    G. E. Fagg, H. I. Schipper, and V. Neuhoff, Myelin protein composition in the rat spinal cord in culture and in vivo: a developmental comparison, Brain Res., 167: 251–258 (1979).CrossRefGoogle Scholar
  32. 32.
    I. V. Viktorov and I. N. Sharonova, Formation of functional synaptic connections between heterogeneous brain formations in organotypic nerve tissue culture, Neurophysiol., 12: 311–317 (1980).Google Scholar
  33. 33.
    E. Zaprianova, Myelination in the central nervous system, Acta Morphol., Sofia, 3: 7–14 (1982).Google Scholar
  34. 34.
    M. K. Christova and E. T. Zaprianova, Myelination in tissue cultures from medulla oblongata and cerebellum, C.R. Acad. Bulgare Sci., 38: 385–387 (1985).Google Scholar
  35. 35.
    J. M. Matthieu, P. Honegger, B. D. Trapp, S. R. Cohen, and H. DeF. Webster, Myelination in rat brain aggregating cell cultures, Neurosci., 3: 565–572 (1978).CrossRefGoogle Scholar
  36. 36.
    J. M. Matthieu, P. Honegger, P. Favrod, E. Gautier, and M. Dolivo, Biochemical characterization of a myelin fraction isolated from rat brain aggregating cell cultures, J. Neurochem., 32: 869–881 (1979).CrossRefGoogle Scholar
  37. 37.
    C. S. Raine, Morphology of myelin and myelination, in: “Myelin”, 2nd edition, P. Morell, ed., Plenum Press, New York (1984).Google Scholar
  38. 38.
    J. A. Benjamins and M. E. Smith, Metabolism of myelin, in: “Myelin”, 2nd edition, P. Morell, ed., Plenum Press, New York (1984).Google Scholar
  39. 39.
    M. B. Bornstein and P. G. Model, Development of synapses and myelin in cultures of dissociated embryonic mouse spinal cord, medulla and cerebrum, Brain Res., 37: 287–293 (1972).CrossRefGoogle Scholar
  40. 40.
    S. U. Kim, Formation of synapses and myelin sheaths in cultures of dissociated chick embryonic spinal cord, Exp. Cell Res., 73: 528–530 (1972).CrossRefGoogle Scholar
  41. 41.
    Z. Lodin, J. Faltin, J. Booher, J. Hartman, and M. Sensenbrenner, Fiber formation and myelinization of cultivated dissociated neurons from chicken dorsal root ganglia, Neurobiology, 3: 66–87 (1973).Google Scholar
  42. 42.
    M. Bird and D. W. James, Myelin formation in cultures of previously dissociated mouse spinal cord, Cell Tissue Res., 162: 93–105 (1975).CrossRefGoogle Scholar
  43. 43.
    L. L. Sarliève, G. Subba Rao, G. LeM. Campbell, and R. A. Pieringer, Investigations on myelination in vitro: Biochemical and morphological changes in cultures of dissociated brain cells from embryonic mice, Brain Res., 189: 79–90 (1980).CrossRefGoogle Scholar
  44. 44.
    L. L. Sarliève, F. V. DeFeudis, L. Ossola, and P. Mandel, Binding of (3H) GABA and (3H) muscimol to subcellular particles of a neurone-enriched culture of mouse brain. Experientia, 36: 597–598 (1980).CrossRefGoogle Scholar
  45. 45.
    L. L. Sarliève, J. P. Delaunoy, A. Dierich, A. Ebel, M. Fabre, P. Mandel, G. Rebel, G. Vincendon, M. Wintzerith, and A. N. K. Yusufi, Investigations on myelination in vitro. III. Ultrastructural biochemical and immunohistochemical studies in cultures of dissociated brain cells from embryonic mice, J. Neurosci. Res., 6: 659–683 (1981).CrossRefGoogle Scholar
  46. 46.
    A. Privat, Morphological approaches to the problems of neuroglia. Some comments, in: “Dynamic Properties of Glia Cells”, E. Schoffeniels, G. Franck, L. Hertz and D. B. Tower, eds., Pergamon Press, Oxford (1978).Google Scholar
  47. 47.
    A. Haugen and O. D. Laerum, Induced glial differentiation of fetal rat brain cells in culture: an ultrastructural study, Brain Res., 150: 225–238 (1978).CrossRefGoogle Scholar
  48. 48.
    K. D. McCarthy and J. de Vellis, Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue, J. Cell Biol., 85: 890–902 (1980).CrossRefGoogle Scholar
  49. 49.
    K. Meller and M. Waelsch, Cyclic morphological changes of glial cells in long-term cultures of rat brain, J. Neurocytol., 13: 29–47 (1984).CrossRefGoogle Scholar
  50. 50.
    M. Fabre, O. K. Langley, L. Bologa, J. P. Delaunoy, A. Lowenthal, V. Ferret-Sena, G. Vincendon, and L. L. Sarliève, Cellular development and myelin production in primary cultures of embryonic mouse brain, Dev. Neurosci., 7: 323–339 (1985).CrossRefGoogle Scholar
  51. 51.
    L. L. Sarliève, M. Fabre, J. P. Delaunoy, R. A. Pieringer, and G. Rebel, Surface-adhering primary cultures of dissociated brain cells from embryonic mice as a tool to study myelination in vitro, in: Neurological Mutations Affecting Myelination”, N. Baumann, ed., INSERM Symposium 14, Elsevier, Amsterdam (1980).Google Scholar
  52. 52.
    R. L. Wollmann, S. Szuchet, J. Barlow, and M. Jerkovic, Ultrastructural changes accompanying the growth of isolated oligodendrocytes, J. Neurosci. Res., 6: 757–769 (1981).CrossRefGoogle Scholar
  53. 53.
    S. E. Poduslo, K. Miller, and J. S. Wolinsky, The production of a membrane by purified oligodendroglia maintained in culture, Exp. Cell Res., 137: 203–215 (1982).CrossRefGoogle Scholar
  54. 54.
    L. L. Sarliève, M. Fabre, G. Rebel, G. Vincendon, and J. M. Matthieu, Investigations on myelination in vitro. IV. Existence of myelinic structures in cultures of dissociated brain cells from embryonic mice, Proc. Int. Soc. Neurochem., 8: 154 (1981).Google Scholar
  55. 55.
    L. L. Sarliève, M. Fabre, G. Rebel, J. Susz, G. Vincendon, and J. M. Matthieu, “Myelin-like” or pre-myelin structures in cultures of dissociated brain cells from 14–15-day-old embryonic mice, in: “Protides of Biological Fluids”, vol. 30, H. Peeters, ed., Pergamon Press, Oxford (1983).Google Scholar
  56. 56.
    L. L. Sarliève, M. Fabre, J. Susz, and J. M. Matthieu, Investigations on myelination in vitro: IV. “Myelin-like” or premyelin structures in cultures of dissociated brain cells from 14–15-day-old embryonic mice, J. Neurosci. Res., 10: 181–210 (1983).CrossRefGoogle Scholar
  57. 57.
    M. Tardy, B. Rolland, C. Fages, and M. Caldani, Astroglial cells: glucocorticoid target cells in the brain, Clinical Neuropharmacol., 7: 296–302 (1984).CrossRefGoogle Scholar
  58. 58.
    M. C. Raff, K. L. Fields, S. I. Hakomori, R. Mirsky, R. M. Pruss, and J. Winter, Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture, Brain Res., 174: 283–308 (1979).CrossRefGoogle Scholar
  59. 59.
    S. M. Ghandour, K. Langley, G. Gombos, M. Hirn, M. R. Hirsch, and C. Goridis, A surface marker for murine vascular endothelial cells defined by monoclonal antibody, J. Histochem. Cytochem., 30: 165–170 (1982).CrossRefGoogle Scholar
  60. 60.
    S. L. Bologa, H. P. Siegrist, A. Z’graggen, K. Hofmann, U. Wiesmann, D. Dahl, and N. Herschkowitz, Expression of antigenic markers during the development of oligodendrocytes in mouse brain cell cultures, Brain Res., 210: 217–229 (1981).CrossRefGoogle Scholar
  61. 61.
    F. Rioux, C. Derbin, S. Margules, R. Joubert, and J. C. Bisconte, Kinetics of oligodendrocyte-like cells in primary culture of mouse embryonic brain, Devl. Biol., 76: 87–99 (1980).CrossRefGoogle Scholar
  62. 62.
    M. J. Kuhar, N. J. M. Birdsall, A. S. V. Burgen, and E. C. Hulme, Ontogeny of muscarinic receptors in rat brain, Brain Res., 184: 375–383 (1980).CrossRefGoogle Scholar
  63. 63.
    O. K. Langley, M. S. Ghandour, and G. Gombos, Immunohistochemistry of cell markers in the central nervous system, in: “Handbook of Neurochemistry”, vol. 7, A. Lajtha, ed., Plenum Press, New York (1984).Google Scholar
  64. 64.
    J. Mallol, M. C. Sarraga, M. Bartolomé, S. M. Ghandour, and G. Gombos, Muscarinic receptors during postnatal development of rat cerebellum: an index of cholinergic synapse formation?, J. Neurochem., 42: 1641–1649 (1984).CrossRefGoogle Scholar
  65. 65.
    L. L. Sarliève, F. V. DeFeudis, L. Ossola, V. Varga, and P. Mandel, Development of (3H) muscimol binding to subcellular particles of a culture of mouse brain, Neurochem. Res., 5: 1279–1290 (1980).CrossRefGoogle Scholar
  66. 66.
    J. P. Delaunoy, G. Roussel, and P. Mandel, Localisation immunohisto-chimique de l’anhydrase carbonique forme C dans le système nerveux central du rat, C.R. Acad.Sc. Paris, Série D, 285: 801–804 (1977).Google Scholar
  67. 67.
    M. S. Ghandour, O. K. Langley, G. Vincendon, and G. Gombos, Double labeling immunohistochemical technique provides evidence of the specificity of glia cell markers, J. Histochem. Cytochem., 27: 1634–1637 (1979).CrossRefGoogle Scholar
  68. 68.
    D. Langui, J. P. Delaunoy, M. S. Ghandour, and M. Sensenbrenner, Immunocytochemical demonstration of both carbonic anydrase isoenzyme II and glial fibrillary acidic protein in some immature rat glial cells in primary culture, Neurosci. Lett., 60: 151–156 (1985).CrossRefGoogle Scholar
  69. 69.
    S. Benjelloun, J. P. Delaunoy, D. Gomes, F. De Vitry, D. Langui, and P. Dupouey, Early expression of carbonic anhydrase II (CA II) in transitory glial cells of the developing murine nervous system, Dev. Neurosci., 8: 150–159 (1986).CrossRefGoogle Scholar
  70. 70.
    F. A. McMorris, S. U. Kim, and T. J. Sprinkle, Intracellular localization of 2′, 3′ — cyclic nucleotide 3′-phosphohydrolase in rat oligodendrocytes and C6 glioma cells, and effect of cell maturation and enzyme induction on localization, Brain Res., 292: 123–131 (1984).CrossRefGoogle Scholar
  71. 71.
    J. F. Goetschy, G. Ulrich, D. Aunis, and J. Ciesielski-Treska, The organization and solubility properties of intermediate filaments and microtubules of cortical astrocytes in culture, J. Neurocytol., 15: 375–387 (1986).CrossRefGoogle Scholar
  72. 72.
    M. D. Noremberg and A. Martinez-Hernandez, Fine structural localization of glutamine synthetase in astrocytes of rat brain, Brain Res., 161: 303–310 (1979).CrossRefGoogle Scholar
  73. 73.
    G. Tholey, A. H. Sena, and M. Ledig, Specific insulin-mediated regulation of glutamine synthetase in cultured chick astroglial cells, J. Neurochem., 47: 1490–1492 (1986).CrossRefGoogle Scholar
  74. 74.
    M. Noppe, A. Lowenthal, D. Karcher, and, J. Gheuens, A two-site immunoradiometric assay for the determination of α-albumin, J. Immunol. Methods, 27: 75–81 (1979).CrossRefGoogle Scholar
  75. 75.
    M. Noppe, A. Lowenthal, J. Gheuens, and D. Karcher, a-albumin (GFA) dosage and localization in human nervous tissue and cerebrospinal fluid, Cell Mol. Biol., 25: 415–420 (1980).Google Scholar
  76. 76.
    M. Wintzerith, E. Wittendorp, R. V. Rechenmann, and P. Mandel, Nuclear, nucleolar repair, or turnover of DNA in adult rat brain, J. Neurosci. Res., 3: 217–230 (1977).CrossRefGoogle Scholar
  77. 77.
    C. W. Campagnoni, G. D. Carey, and A. T. Campagnoni, Synthesis of myelin basic proteins in the developing mouse brain, Arch. Biochem. Biophys., 190: 118–125 (1978).CrossRefGoogle Scholar
  78. 78.
    E. Barbarese and S. E. Pfeiffer, Developmental regulation of myelin basic protein in dispersed cultures, Proc. Natl. Acad. Sci. USA, 78: 1953–1957 (1981).CrossRefGoogle Scholar
  79. 79.
    J. M. Matthieu, B. Koellreutter, and M. L. Joyet, Changes in CNS myelin proteins and glycoproteins after in situ autolysis, Brain Res. Bull., 2: 15–21 (1977).CrossRefGoogle Scholar
  80. 80.
    T. V. Waehneldt, Ontogenetic study of myelin-derived fraction with 2′, 3′-cyclic nucleotide 3′-phosphohydrolase activity higher than that of myelin, Biochem. J., 151: 435–437 (1975).Google Scholar
  81. 81.
    T. V. Waehneldt, J. M. Matthieu, and V. Neuhoff, Characterization of a myelin-related fraction (SN 4) isolated from rat forebrain and two developmental stages, Brain Res., 138: 29–43 (1977).CrossRefGoogle Scholar
  82. 82.
    N. R. Bhat, L. L. Sarliève, G. Subba Rao, and R. A. Pieringer, Investigations on myelination in vitro. Regulation by thyroid hormone in cultures of dissociated brain cells from embryonic mice, J. Biol. Chem., 254: 9342–9344 (1979).Google Scholar
  83. 83.
    A. Aranda, A. Pascual, V. Ferret, I. Lelong, G. Rebel, and L. Sarliève, Thyroid hormone receptors in developing neuronal and glial cell cultures (abstract), Annls. Endocr., 45: 24 (1984).Google Scholar
  84. 84.
    V. Ferret, A. Aranda, A. Pascual, M. M. Gabellec, G. Rebel, G. Vincendon, and L. L. Sarliève, Density of triiodothyronine receptors in developing mouse neuronal and glial cell cultures and in pure chick cultured neurons and astrocytes (abstract), J. Neurochem., 44:S141D (1985).Google Scholar
  85. 85.
    A. Pascual, A. Aranda, V. Ferret-Sena, M. M. Gabellec, G. Rebel, and L. L. Sarliève, Triiodothyronine receptors in developing mouse neuronal and glial cell cultures and in chick-cultured neurones and astrocytes, Dev. Neurosci., 8: 89–101 (1986).CrossRefGoogle Scholar
  86. 86.
    V. Ferret-Sena, A. Sena, G. Rebel, A. Pascual, L. Freysz, G. Vincendon, and L. L. Sarliève, Nuclear triiodothyronine receptors and mechanism of triiodothyronine and insulin action on the synthesis of cerebroside sulfotransferase by cultures of cells dissociated from brains of embryonic mice, in: “NATO ASI Series: Enzymes of Lipid Metabolism II”, L. Freysz, H. Dreyfus, R. Massarelli, and S. Gatt, eds., Plenum Press, New York (1986).Google Scholar
  87. 87.
    M. P. Arpin, L. Sarliève, A. Waksman, and P. Hubert, Characterization of insulin receptors in pure neuronal and glial cell cultures from chick embryos brain (abstract) (1986).Google Scholar
  88. 88.
    F. Besnard, M. Sensenbrenner, and G. Labourdette, Culture of oligodendrocytes from brain of newborn rat, in: “A dissection and Tissue Culture Manual for the Nervous System”, B. Haber, A. Shahar and A. R. Liss, eds., New York (1987).Google Scholar
  89. 89.
    F. Montiel, L. Sarliève, A. Pascual, and A. Aranda, Multihormonal control of proliferation and cytosolic glycerol phosphate dehydrogenase, lactate dehydrogenase and malic enzyme in glial cells in culture, Neurochem. Int., 9: 247–253 (1986).CrossRefGoogle Scholar
  90. 90.
    S. Hirano, N. Iwasaki-Mutou, H. Asou, and Y. Ogawa, Myelin formation in dissociated cell cultures of rat embryonic cerebral hemispheres, Cell Struct. Function, 10: 271–278 (1985).CrossRefGoogle Scholar
  91. 91.
    A. G. Walker, J. A. Chapman, and M. G. Rumsby, Immunocytochemical demonstration of glial-neuronal interactions and myelinogenesis in subcultures of rat brain cells, J. Neuroimmunol., 9: 159–177 (1985).CrossRefGoogle Scholar
  92. 92.
    S. G. Amur, G. Shanker, J. M. Cochran, H. S. Ved, and R. A. Pieringer, Correlation between inhibition of myelin basic protein (arginine) methyltransferase by sinefungin and lack of compact myelin formation in cultures of cerebral cells from embryonic mice, J. Neurosci. Res., 16: 367–376 (1986).CrossRefGoogle Scholar
  93. 93.
    E. J. Bradel and F. P. Prince, Cultured neonatal rat oligodendrocytes elaborate myelin membrane in the absence of neurons, J. Neurosci. Res., 9: 381–392 (1983).CrossRefGoogle Scholar
  94. 94.
    A. Espinosa de Los Monteros, G. Roussel, N. M. Neskovic, and J. L. Nussbaum, A study in vitro of pre-myelination oligodendrocytes, Biochem. Soc. Trans., 14: 648–650 (1986).Google Scholar
  95. 95.
    L. H. Rome, P. N. Bullock, F. Chiappelli, M. Cardwell, A. M. Adinolfi, and D. Swanson, Synthesis of a myelin-like membrane by oligodendrocytes in culture, J. Neurosci. Res., 15: 49–65 (1986).CrossRefGoogle Scholar
  96. 96.
    H. H. Althaus, H. Montz, V. Neuhoff, and P. Schwartz, Isolation and cultivation of mature oligodendroglial cells, Naturwissenschaften, 71: 309–315 (1984).CrossRefGoogle Scholar
  97. 97.
    S. H. Yim, S. Szuchet, and P. E. Polak, Cultured oligodendrocytes. A role for cell-substratum interaction in phenotypic expression, J. Biol. Chem., 261: 11808–11815 (1986).Google Scholar
  98. 98.
    B. Guentert-Lauber, F. Monnet-Tschudi, F. X. Omlin, P. Favrod, and P. Honegger, Serum-free aggregate cultures of rat CNS glial cells: biochemical, immunocytochemical and morphological characterization, Dev. Neurosci., 7: 33–44 (1985).CrossRefGoogle Scholar
  99. 99.
    P. Wood and R. P. Bunge, The biology of the oligodendrocyte, in: “Advances in Neurochemistry: Oligodendroglia”, W. T. Norton, ed., Plenum Press, New York (1984).Google Scholar
  100. 100.
    L. Bologa, Oligodendrocytes, key cells in myelination and target in demyelinating diseases, J. Neurosci. Res., 14: 1–20 (1985).CrossRefGoogle Scholar
  101. 101.
    K. Fan and L. McAlister, Co-culture study of rat neuron-glial interaction: evidence of neuronal influence on myelination, Neurosci. Lett., 59: 111–116 (1985).CrossRefGoogle Scholar
  102. 102.
    L. Bologa, Y. Aizenman, F. Chiappelli, and J. de Vellis, Regulation of myelin basic protein in oligodendrocytes by a soluble neuronal factor, J. Neurosci. Res., 15: 521–528 (1986).CrossRefGoogle Scholar
  103. 103.
    W. B. Macklin, C. L. Weill, and P. L. Deininger, Expression of myelin proteolipid and basic protein mRNAs in cultured cells, J. Neurosci. Res., 16: 203–217 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • L. L. Sarliève
    • 1
  1. 1.Centre de Neurochimie du CNRS and U.44 de l’INSERMStrasbourg CedexFrance

Personalised recommendations