The Plasticity of Mature Oligodendrocytes: A Role for Substratum in Phenotype Expression

  • S. Szuchet
Part of the NATO ASI Series book series (NSSA, volume 142)


During development in the CNS, oligodendrocytes (OLG) extend processes that invest axons and generate myelin (Peters et. al., 1976). This period is marked by a rapid synthesis of myelin specific proteins (Benjamins, 1984) and lipids (Morell and Toews, 1984). Having made myelin, OLG must then maintain it and in order to do so they continue to synthesize myelin components but at basal levels. The fact that isolated OLG maintained in culture express myelinogenic properties (Mirsky et. al., 1980; Szuchet et. al., 1980) makes them a suitable model for probing the signals that control myelin assembly. We have maintained oligodendrocytes isolated from post-myelination brains in culture under two sets of conditions:
  1. a)

    Non — attached. To achieve this, oligodendrocytes are seeded into tissue culture plates where they form floating clusters. Biochemically, morphologically and ultrastructurally they resemble freshly isolated cells. We call these cells B3.f OLG. B3 for band III oligodendrocytes; f for floating; (Szuchet et. al., 1980). Routinely we keep B3.f OLG for 4–5 days, but extending this time to 16 days does not alter the metabolism of the cells, nor is there any obvious change in morphology (Szuchet and Yim, 1984; Yim et. al., 1986).

  2. b)

    Attached. When B3.f OLG (after 4 to 5 days in vitro) are transferred to polylysine coated plates, they adhere within 24h and develop a profuse network of processes. We refer to these cells as B3.fA OLG (A for adherent). We have maintained B3.fA OLG for 120 days with better than 98% purity as assessed by immuno-cytochemical criteria (Fig. 1).



Myelin Basic Protein Vasoactive Intestinal Peptide Vasoactive Intestinal Polypeptide Mature Oligodendrocyte Myelin Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arvanitis, D. and Szuchet, S., 1986, Myelin palingenesis, Abstract, Second Joint Meeting of World Federation of Neurology, Baden, Vienna, August 28–30.Google Scholar
  2. Arvanitis, D., Szuchet, S., Polak, P. E., and Yim, S. H., 1986, Molecular organization of myelin membranes, J. Cell Biol., 103, 229a.Google Scholar
  3. Benjamins, J. A., 1984, Protein metabolism of oligodendroglial cells in vivo, in; “Oligodendroglia”, Plenum Press, New York.Google Scholar
  4. Bradel, E. J., Prince, F. P., 1983, Cultured neonatal rat oligodendrocytes elaborate myelin membrane in the absence of neurons, J. Neurosci. Res., 9: 381.CrossRefGoogle Scholar
  5. Fabre, M., Langley, O. K., Bologa, I., Delaunoy, J. P., Lowenthal, A., Ferret-Sena, V., Vincendon, G., Sarliève, L. L., 1985, Cellular development and myelin production in primary cultures in embryonic mouse brain, Dev. Neurosci., 7: 323.CrossRefGoogle Scholar
  6. McMorris, F. A., 1983, Cyclic AMP induction of a myelin enzyme 2′, 3′-cyclic nucleotide 3′-phosphohydrolase in rat oligodendrocytes, J. Neurochem., 41: 506.CrossRefGoogle Scholar
  7. Mirsky, R., Winter, J., Abney, E. R., Pruss, R. M., Gavrilovic, J. Raff, M. C., 1980, Myelin-specific proteins and glycolipids in rat schwann cells and oligodendrocytes in culture, J. Cell Biol., 84: 483.CrossRefGoogle Scholar
  8. Morell, P., Toews, A. D., 1984, In vivo metabolism of oligodendroglial lipids, in: “Oligodendroglia”, Plenum Press, New York.Google Scholar
  9. Peters, A., Palay, S. L., Webster, H. D. F., 1976, in: “The fine structure of the nervous system”, Saunders, Philadelphia.Google Scholar
  10. Rome, L. H., Bullock, P. N., Chiappelli, F., Adinolfi, A. M., and Swanson, D., 1986, Synthesis of myelin-like membrane by oligodendrocytes in culture, J. Neurosci. Res., 15: 49.CrossRefGoogle Scholar
  11. Sarliève, L. L., Fabre, M., Rebel, G., Susz, J., Vincendon, G., Matthieu, J. M., 1983a, Myelin-like or pre-myelin structures in cultures of dissociated brain cells from 14–15 day-old embryonic mice, in: “Protides of the biological fluids”, Pergamon Press, Oxford.Google Scholar
  12. Sarliève, L. L., Fabre, M., Susz, J., Matthieu, J. M., 1983b, Myelin-like or premyelin structures in cultures of dissociated brain cells from 14–15 day-old embryonic mice, J. Neurosci. Res., 10: 191.CrossRefGoogle Scholar
  13. Szuchet, S., 1987, Myelin palingenesis: the reformation of myelin by mature oligodendrocytes in the absence of neurons, in: “Glial-Neuronal Communication in Development and Regeneration”, A. Althaus and W. Seifert, eds., Springer-Verlag, New York.Google Scholar
  14. Szuchet, S., Polak, P. E., and Yim, S. H., 1986, Mature oligodendrocytes cultured in the absence of neurons recapitulate the ontogenic development of myelin, Dev. Neurosci., 208–221.Google Scholar
  15. Szuchet, S., Polak, P. E., Yim, S. H., and Arvanitis, D., 1987, The plasma membrane of living oligodendrocytes. III. Relatedness to myelin. Submitted.Google Scholar
  16. Szuchet, S., Stefnsson, K., Wollmann, R. L., Dawson, G., and Arnason, B. G. W., 1980, Maintenance of isolated oligodendrocytes in long-term culture, Brain Res., 200–151.Google Scholar
  17. Szuchet, S. and Yim, S. H., 1984, Characterization of a subset of oligodendrocytes separated on the basis of a selective adherence properties, J. Neurosci. Res., 11: 131.CrossRefGoogle Scholar
  18. Szuchet, S., Yim, S. H., and Monsma, S., 1983, Lipid metabolism of isolated oligodendrocytes maintained in long-term culture mimics events associated with myelinogenesis, Proc. Natl. Acad. Sci. (USA), 80: 7019.CrossRefGoogle Scholar
  19. Turner, R. S., Chou, C. H. J., Kibler, R. F., and Kuo, J. F., 1982, Basic protein in brain myelin is phosphorylated by endogenous phospholi-pid-sensitive Ca2+-dependent protein kinase, J. Neurochem., 39: 1397.CrossRefGoogle Scholar
  20. Ulmer, J. B., Braun, P. E., 1984, In vivo phosphorylation of myelin basic protein in developing mouse brain: evidence that phosphyloration is an early event in myelin formation, Dev. Neurosci., 6: 345.CrossRefGoogle Scholar
  21. Vartanian, T., 1987, PhD, Thesis, University of Chicago, Chicago, IL.Google Scholar
  22. Vartanian, T., Szuchet, S., and Dawson, G., 1987, Oligodendrocyte substratum adhesion modulates expression of adenylate cyclase linked receptors, Submitted for publication.Google Scholar
  23. Vartanian, T., Szuchet, S., Dawson, G., and Campagnoni, A. T., 1986a, Oligodendrocyte adhesion activates protein kinase C-mediated phosphorylation of myelin basic protein, Science, 234: 1395.CrossRefGoogle Scholar
  24. Vartanian, T., Yim, S. H., Szuchet, S., and Dawson, G., 1986b, Synthesis and phosphorylation of myelin basic protein in oligodendrocyte cultures: regulatory events, Adv. Biosci., 61: 133.Google Scholar
  25. Wood, P. M., and Bunge, R. P., 1986, Myelination of cultured dorsal root ganglion neurons by oligodendrocytes obtained from adults rats, J. Neuro. Sci., 74: 153.CrossRefGoogle Scholar
  26. Yim, S. H., Monsma, S., Szuchet, S., and Hertz, L., 1986, Lipid and glycolipid metabolism of cultured astrocytes: A time course study, J. Neurosci. Res., 15: 29.CrossRefGoogle Scholar
  27. Yim, S. H., Szuchet, S., and Polak, P. E., 1986, Cultured oligodendrocytes, J. Biol. Chem., 261: 11808.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • S. Szuchet
    • 1
  1. 1.Department of Neurology and the Brain Research InstituteThe University of ChicagoChicagoUSA

Personalised recommendations