Light Scattering Study of Adsorption of Surfactant Molecules at Oil-Water Interface

  • A. M. Cazabat
  • D. Langevin
  • J. Meunier
  • A. Pouchelon


We have studied the following two types of Oil-water interfaces by light scattering techniques:
  1. a) Flat Interfaces

    Interfacial tension has been deduced from the spectrum of the light scattered by the interface. The results are relative to water-toluene-sodium dodecyl sulfate (SDS)-butanol mixtures either in the two phase, or in the three phase region of the phase diagram. Values down to 10−3 dynes/cm have been measured. Measurements down to 10−5 — 10−6 dynes/cm are expected to be achievable with this technique.

  2. b) Microemulsions

    The intensity and the autocorrelation function of light scattered by a microemulsion have been investigated for the water in oil type microemulsions. We studied two mixtures: water-SDS-cyclohexane-pentanol and water-SDS-toluene-butanol. We obtain information about droplet size (radius of the aqueous core, hydro-dynamic radius) and about interaction forces between the droplets (from osmotic compressibility and diffusion coefficient data). The role of the nature of oil and the influence of salt on these parameters is also discussed.



Sodium Dodecyl Sulfate Interfacial Tension Droplet Size Virial Coefficient Surface Viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. N. Healy, R. L. Reed and D. G. Stenmark, Soc. Pet. Eng. J., 16, 147 (1976).Google Scholar
  2. 2.
    K. Shinoda and S. Friberg, Adv. Colloid and Interface Sci., 4, 281 (1975).CrossRefGoogle Scholar
  3. 3.
    C.A. Miller, R-N. Hwan, W. J. Benton, and T. Fort, J. Colloid and Interface Sci., 61, 554 (1977).CrossRefGoogle Scholar
  4. 4.
    D. Langevin and J. Meunier, in “Photon Correlation Spectroscopy and Velocimetry,” H. Z. Cummins and E. R. Pike, eds., Plenum Press, New York, 1977.Google Scholar
  5. 5.
    A. A. Calje, W.G.M. Agterof, and A. Vrij, in “Micellization, Solubilization and Microemulsions,” Vol. 2, K. L. Mittal, ed., Plenum Press, New York, 1977.Google Scholar
  6. 6.
    A. M. Cazabat, D. Langevin, and A. Pouchelon, J. Colloid and Interface Sci., 73, 1 (1980).CrossRefGoogle Scholar
  7. 7.
    C. Griesmar and D. Langevin, Proceedings of the Conference on “Physicochimie des amphiphiles,” Bordeaux, 1978.Google Scholar
  8. 8.
    P. Lalanne, J. Biais, B. Clin, A. M. Bellocq, and B. Lemanceau, J. Chim. Phys., 75, 236 (1978).Google Scholar
  9. 9.
    D. Langevin and J. Meunier, Optic Comm., 6, 427 (1972).CrossRefGoogle Scholar
  10. 10.
    G. K. Batchelor, J. Fluid Mech., 74, 1 (1976).CrossRefGoogle Scholar
  11. 11.
    B. U. Felderhof, J. Phys. (A), 11, 929 (1978).Google Scholar
  12. 12.
    A. A. Graciaa, J. Lachaise, A. Martinez, M. Bourrel, and C. Chamber, CRAS, 282B, 547 (1976).Google Scholar
  13. 13.
    M. Dvolaitzky, M. Guyot, M. Lagües, J. P. Le Pesant, R. Ober, C. Sauterey, and C. Taupin, J. Chem. Phys., 69, 3279 (1978).CrossRefGoogle Scholar
  14. 14.
    P. N. Pusey, J. Phys. (A), 8, 1433 (1975).Google Scholar
  15. 15.
    S. Candau, J. Boutillier, and F. Canday, Polymer, 20, 1237 (1979).CrossRefGoogle Scholar
  16. 16.
    G. D. Phillies, J. Chem. Phys., 67, 4690 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • A. M. Cazabat
    • 1
  • D. Langevin
    • 1
  • J. Meunier
    • 1
  • A. Pouchelon
    • 1
  1. 1.Laboratoire de Spectroscopie Hertzienne de l’E.N.S.Paris Cedex 05France

Personalised recommendations