Effect of Alcohols on the Equilibrium Properties and Dynamics of Micellar Solutions


The addition of alcohol (ethanol to hexanol) to micellar solutions of alkyltrimethylammonium bromides results in a decrease of cmc and of micelle molecular weight, and in an increase in the degree of ionization of micelles, at detergent concentration close to the cmc. Moreover the relaxation times for the exchange of detergent ions between micelles and surrounding solution and for the micelle formation-dissolution become much shorter (labilization of the micelles) upon addition of the alcohol. The degree of ionization of alkyltrimethylammonium bromide micelles in water-alcohol mixtures goes through a minimum when plotted as a function of the alkyl chain length. The various results have been interpreted in terms of the effect of solubilization of alcohol in the micelle palissade layer on the micelle surface charge density.


Colloid Interface Mixed Micelle Micellar Solution Alcohol Molecule Detergent Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. L. Mittal, ed., “Micellization, Solubilization and Microemulsions,” Vols. I and II, Plenum, New York, 1977.Google Scholar
  2. 2.
    K. Shinoda and S. Friberg, Adv. Colloid Interface Sci., 4, 281 (1975).CrossRefGoogle Scholar
  3. 3.
    E. Sjöblom and S. Friberg, J. Colloid Interface Sci., 67, 16 (1978).CrossRefGoogle Scholar
  4. 4.
    L. E. Scriven, in “Micellization, Solubilization and Microemulsions,” K. L. Mittal, ed., Vol. II, Plenum, New York, p. 877, 1977; Nature, 263, 123 (1976).Google Scholar
  5. 5.
    Y. Talmon and S. Prager, J. Chem. Phys., 69, 2984 (1978).CrossRefGoogle Scholar
  6. 6.
    E. Ruckenstein, J. Colloid Interface Sci., 66, 369 (1978); E. Ruckenstein and J. Chi, J. Chem. Soc. Faraday Trans. II, 71, 1690 (1975).CrossRefGoogle Scholar
  7. 7.
    A. Skoulios and D. Guillon, J. Phys. Lett., 38, L-137 (1977).CrossRefGoogle Scholar
  8. 8.
    E.A.G. Aniansson, S. Wall, M. Almgren, H. Hoffmann, I. Kielman, W. Ulbricht, R. Zana, J. Lang, and C. Tondre, J. Phys. Chem., 80, 905 (1976).CrossRefGoogle Scholar
  9. 9.
    R. Zana, J. Colloid Interface Sci., in press.Google Scholar
  10. 10.
    H. Coll, J. Phys. Chem., 74, 520 (1970).CrossRefGoogle Scholar
  11. 11.
    K. S. Birdi, S. Backlund, K. Sorensen, T. Krag, and S. Dalsager, J. Colloid Interface Sci., 66, 118 (1973).CrossRefGoogle Scholar
  12. 12.
    J. Lang, C. Tondre, R. Zana, R. Bauer, H. Hoffmann, and W. Ulbricht, J. Phys. Chem., 79, 276 (1975).CrossRefGoogle Scholar
  13. 13.
    C. Tondre, J. Lang, and R. Zana, J. Colloid Interface Sci., 52, 372 (1975).CrossRefGoogle Scholar
  14. 14.
    K. Hayase and S. Hayano, Bull. Chem. Soc. (Japan), 50, 83 (1977).CrossRefGoogle Scholar
  15. 15.
    K. Shirahama and T. Kashiwabara, J. Colloid Interface Sci., 36, 65 (1971).CrossRefGoogle Scholar
  16. 16.
    M. Manabe and M. Koda, Bull. Chem. Soc. (Japan), 51, 1599 (1978).CrossRefGoogle Scholar
  17. 17.
    H. Singh and S. Swarup, Bull. Chem. Soc. (Japan), 51, 1534 (1978).CrossRefGoogle Scholar
  18. 18.
    M. Manabe, K. Shirahama, and M. Koda, Bull. Chem. Soc. (Japan), 49, 2904 (1976).CrossRefGoogle Scholar
  19. 19.
    This can be simply demonstrated by deriving with respect to T the expression of the free energy of formation of an ion-pair. See for instance M. Emerson and F. Holtzer, J. Phys. Chem., 71, 3320 (1967).CrossRefGoogle Scholar
  20. 20.
    J. T. Pearson, J. Colloid Interface Sci., 37, 509 (1971).CrossRefGoogle Scholar
  21. 21.
    K. J. Mysels, J. Colloid Interface Sci., 10, 507 (1955).CrossRefGoogle Scholar
  22. 22.
    A. Yamauchi, T. Kunisaki, T. Minematsu, Y. Tomokiyo, T. Yamaguchi, and H. Kimikuza, Bull. Chem. Soc. (Japan), 51, 2791 (1978).CrossRefGoogle Scholar
  23. 23.
    G. Parfitt and J. Wood, Kolloid Z.Z. Polymere, 229, 55 (1969).CrossRefGoogle Scholar
  24. 24.
    R. Zana, J. Candau, C. Strazielle, and S. Yiv (unpublished results).Google Scholar
  25. 25.
    E.A.G. Aniansson and S. Wall, J. Phys. Chem., 78, 1024 (1974) and 79, 857 (1975).CrossRefGoogle Scholar
  26. 26.
    J. Cardinal and P. Mukerjee, J. Phys. Chem., 82, 1614 (1978); P. Mukerjee and J. Cardinal, ibid., 82, 1620 (1978), and references therein.CrossRefGoogle Scholar
  27. 27.
    P. Lianos and R. Zana, Chem. Phys. Lett., in press.Google Scholar
  28. 28.
    P. Maelstaf and P. Bothorel, Compt. Rend. Acad. Sci. (Paris), Ser. C, 288, 13 (1979); D. O. Shah, private communication.Google Scholar
  29. 29.
    E.A.G. Aniansson, in “Techniques and Applications of Fast Reactions in Solutions,” D. Reidel Publ. Co., Dordrecht, Holland, p. 249, 1979.CrossRefGoogle Scholar
  30. 30.
    H. Hoffmann, Ber. Bunsenges. Phys. Chem., 82, 988 (1978), and references therein.CrossRefGoogle Scholar
  31. 31.
    W. Baumuller, H. Hoffmann, W. Ulbricht, C. Tondre, and R. Zana, J. Colloid Interface Sci., 64, 418 (1978).CrossRefGoogle Scholar
  32. 32.
    S. Yiv and R. Zana, J. Colloid Interface Sci., 65, 286 (1978).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • R. Zana
    • 1
  1. 1.C.N.R.S., Centre de Recherches sur les MacromoléculesStrasbourg CedexFrance

Personalised recommendations