The Influence of Interfacial Properties on Immiscible Displacement Behavior

  • C. E. Brown
  • T. J. Jones
  • E. L. Neustadter

Abstract

In order to obtain better understanding of displacement mechanisms of importance to oil recovery, a technique has been developed to study the immiscible displacement of a liquid/fluid system in capillaries of model geometry. Called the Interfacial Displacement Tensiometer, this technique enables measurement of the pressure changes accompanying displacement of a single interface. The effects of discrete events, such as changes in pore geometry, can therefore be determined. From the pressure measurements, together with determination of the wettability, dynamic interfacial tensions can be calculated. The results presented are for a range of pure oil/aqueous phase systems; in particular effects due to the presence of water soluble and oil soluble surfactants are examined. The results demonstrate that the surfactant systems possess high (dynamic) interfacial tensions during displacement, and the factors controlling their values are discussed. In addition, it is demonstrated that highly visco-elastic interfacial films can contribute an additional resistance to displacement.

Keywords

Surfactant Benzene Toluene Syringe Petrol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Taber, Soc. Pet, Eng. J., 9, 3 (1969).Google Scholar
  2. 2.
    A. Abrams, Soc. Pet. Eng. J., l5, 437 (1975).Google Scholar
  3. 3.
    J. Reisberg and T. M. Doscher, Prod. Monthly, 21, 43 (1956).Google Scholar
  4. 4.
    D. T. Wasan, S. M. Shah, M. Chan, K. Sampath, and R. Shah, preprints to “Chemistry of Oil Recovery Symposium,” Am. Chem. Soc., 23, 705 (1978).Google Scholar
  5. 5.
    K. M. Ng, H. T. Davis, and L. E. Scriven, Chem. Eng. Sci., 33, 1009 (1978).CrossRefGoogle Scholar
  6. 6.
    A. T. Bourgoyne, B. M. Caudle, and O. K. Kimbler, Soc. Pet. Eng. J., 12, 60 (1972).Google Scholar
  7. 7.
    J. C. Slattery, AIChE Journal, 20, 1145 (1974).CrossRefGoogle Scholar
  8. 8.
    E. B. Dussan, AIChE Journal, 23, 131 (1977).CrossRefGoogle Scholar
  9. 9.
    T. D. Blake, D. H. Everett, and J. M. Haynes, S.C.I. Monograph No. 25, 164 (1967).Google Scholar
  10. 10.
    R. J. Hansen and T. Y. Toong, J. Colloid Interface Sci., 36, 410 (1951).CrossRefGoogle Scholar
  11. 11.
    C. C. Templeton, Petrol. Trans. AIME, 201, 162 (1954).Google Scholar
  12. 12.
    C. E. Brown, E. L. Neustadter, and K. P. Whittingham, “Enhanced Oil Recovery by Displacement with Saline Solutions,” pub. British Petroleum, p. 91, 1977.Google Scholar
  13. 13.
    C. E. Brown, Chem. Industry, Nos. 22, 875 (1978).Google Scholar
  14. 14.
    A. Chatenever, Petrol. Trans. AIME, 195, 149 (1952).Google Scholar
  15. 15.
    O. K. Kimbler and B. H. Caudle, Oil & Gas J., 55, 85 (December 16, 1957).Google Scholar
  16. 16.
    J. A. Davies and S. C. Jones, J. Pet. Tech., 1415 (1968).Google Scholar
  17. 17.
    C. E. Brown, E. L. Neustadter, and K. P. Whittingham, paper presented at the “European Symposium on Enhanced Oil Recovery,” Edinburgh, 1978.Google Scholar
  18. 18.
    R. L. Hoffman, J. Colloid Interface Sci., 50, 228 (1975).CrossRefGoogle Scholar
  19. 19.
    C. E. Stauffer, J. Phys. Chem., 69, 1933 (1965).CrossRefGoogle Scholar
  20. 20.
    J. H. Brooks and B. A. Pethica, Trans. Faraday Soc, 61, 571 (1965).CrossRefGoogle Scholar
  21. 21.
    H. R. Jacobs, Biorheology, 1, 229 (1963).Google Scholar
  22. 22.
    T. D. Blake and J. M. Haynes, J. Colloid Interface Sci., 30, 421 (1969).CrossRefGoogle Scholar
  23. 23.
    J. Lucassen and M. Van den Temple, Chem. Eng. Sci., 27, 1283 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • C. E. Brown
    • 1
  • T. J. Jones
    • 1
  • E. L. Neustadter
    • 1
  1. 1.New Technology DivisionBP Research CentreSunbury-on-Thames MiddlesexUK

Personalised recommendations