Concepts of Glass-Ceramics

  • Daniel R. Stewart


It has been pointed out in previous sections1 that, while cooling from the melting temperature, all liquids traverse a temperature range in which the liquid becomes thermodynamically unstable with respect to one or more crystalline phases. Whether or not crystals will form as a result of this instability is dependent on the rate of cooling and the kinetics of crystallization of the particular crystalline species that are involved.


Nucleate Agent Colloidal Crystal Flexure Strength Lithium Silicate Control Crystallization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. G. Bergeron, “General Aspect of the Crystallization of Glass,” paper at this symposium.Google Scholar
  2. 2.
    S. D. Stookey and R. D. Maurer, “Catalyzed Crystallization of Glass-Theory and Practice,” Progress in Ceramic Science, Vol. 2, Pergamon Press, N.Y., 1962.Google Scholar
  3. 3.
    H. S. Hartman, “Application of High-Temperature Microscopy to Production Problems,” Glass Industry, 51(2) 60–65 (Feb., 1970).Google Scholar
  4. 4.
    G. W. Morey, The Properties of Glass, 2nd Ed., Reinhold Pub. Corp., N.Y., 1954.Google Scholar
  5. 5.
    M. deReaumur, “The Art of Making a New Type of Porcelain by Very Simple and Easy Methods of Transforming Glass into Porcelain, Part I,” Mem. Acad. Sci., 370-388 (1739).Google Scholar
  6. 6.
    G. Tammann, The States of Aggregation, D. Van Nostrand Co., N.Y., 1925.Google Scholar
  7. 7.
    A. Portevin, “Molten Basalt,” Mem. Soc. Ing. Civils France, 266-300 (1928).Google Scholar
  8. 8.
    H. H. Blau, “Diffusing Glasses for Illumination,” Ind. Eng. Chem., 25, 848–853 (1933).CrossRefGoogle Scholar
  9. 9.
    S.D. Stookey, “Chemical Machining of Photosensitive Glass,” Ind. Eng. Chem., 45(1) 115–118 (1953).CrossRefGoogle Scholar
  10. 10.
    F. Albrecht, “New Types of Hard Materials from Glass,” Beispiele Angewandter Forschung, Herausgegeben von der Fraunhofer Gesellschaft zur Forderung der Wissenschaften Forschung, Munchen, pp. 19-22, 1955.Google Scholar
  11. 11.
    D. R. Stewart and W. L. Davis, “Evaluation of a Large Glass-Ceramic Mirror Blank,” Appl. Opt., in press.Google Scholar
  12. 12.
    D. A. Duke and G. A. Chase, “Glass-Ceramics for High Precision Reflective Optics Applications,” Appl. Opt., 7(5) 813–817 (1969).CrossRefGoogle Scholar
  13. 13.
    M. E. Fine, Phase Transformations in Condensed Systems, The MacMillan Co., N.Y., 1964.Google Scholar
  14. 14.
    W. A. Weyl, “Nucleation, Crystallization and Glass Formation,” Sprechsaal für Keramik. Glas. Email., 93(6) 128–136 (1960).Google Scholar
  15. 15.
    S.D. Stookey, “Catalyzed Crystallization of Glass in Theory and Practice,” Ind. Eng. Chem., 51, 805–808 (1954).CrossRefGoogle Scholar
  16. 16.
    D. Bahat, “Heterogeneous Nucleation of Alkaline Earth Feldspars in Glasses,” J. Mater. Sci., 4, 847–854 (1969).CrossRefGoogle Scholar
  17. 17.
    G. F. Neilson, “Phase Separation in Glass and Glass-Ceramic Systems,” Faraday Society Discussions, in press.Google Scholar
  18. 18.
    R. D. Maurer, “Effect of Catalyst Size in Heterogeneous Nucleation,” J. Chem. Phys., 31(2) 444–448 (1959).CrossRefGoogle Scholar
  19. 19.
    W. Hinz and P. Knuth, “Phase Separation and Nucleus Formation in the Preparation of Vitroceramics,” Glastech. Ber., 34(9) 431–437 (1961).Google Scholar
  20. 20.
    R. Roy, “Metastable Liquid Immiscibility and Subsolidus Nucleation,” J. Am. Ceram. Soc., 43(12) 670–671 (1960).CrossRefGoogle Scholar
  21. 21.
    J. F. MacDowell and G. H. Beall, “Immiscibility and Crystallization in Al2O3-SiO2 Glasses,” J. Am. Ceram. Soc., 52(1) 17–25 (1969).CrossRefGoogle Scholar
  22. 22.
    P. W. McMillan, Glass-Ceramics, Academic Press, N.Y., 1964.Google Scholar
  23. 23.
    S.D. Stookey, “Catalyzed crystallization of Glass in Theory and Practice,” Glastech. Ber., 32K, pp. V/1–8, V. Int. Glaskongress, Frankfurt, 1959.Google Scholar
  24. 24.
    K. Nakagawa and T. Izumitani, “Relationship between Phase Separation and Crystallization in Li2O · 2.5 SiO2 Glass and A Lithium Silicate Containing a Large Amount of TiO2,” Phys. and Chem. of Glasses, 10(5) 179–184 (1969).Google Scholar
  25. 25.
    P. E. Doherty, D. W. Lee, and R. S. Davis, “Direct Observation of the Crystallization of Li2O-Al2O3-SiO2 Glasses Containing TiO2,” J. Am. Ceram. Soc., 50(2) 77–81 (1967).CrossRefGoogle Scholar
  26. 26.
    G. F. Neilson, “Small-Angle X-Ray Scattering Study of Nucleation and Devitrification in a Glass-Ceramic Material,” paper presented at the 1966 Pittsburgh Diffraction Conference.Google Scholar
  27. 27.
    V. A. Blinov, “The Mechanism of Nucleated Crystallization of Glasses in Lithia-Alumina-Silica and Cordierite Systems,” J. Mater. Sci., 4, 461–468 (1969).CrossRefGoogle Scholar
  28. 28.
    R. H. Redwine and M. A. Conrad, “Microstructure Developed in Crystallized Glass-Ceramics,” Chapter 40, Ceramic Microstructures, John Wiley and Sons, Inc., N.Y., 1968.Google Scholar
  29. 29.
    C. K. Chyung, “Secondary Grain Growth of Li2O-Al2O3-SiO2-TiO Glass-Ceramics,” J. Am. Ceram. Soc., 52(5) 242–245 (1969).CrossRefGoogle Scholar
  30. 30.
    M. Tashiro and S. Sakka, “Some Physical Properties of Glass-Ceramics and Their Relation to Microstructure,” Bull. Inst. Chem. Res., Kyoto Univ., 42(5) 351–365 (1964).Google Scholar
  31. 31.
    J. E. Rapp, personal communication.Google Scholar
  32. 32.
    M. J. Buerger, “The Stuffed Derivatives of the Silica Structures,” Am. Mineral., 39, 600–614 (1954).Google Scholar
  33. 33.
    S. Ray and G. M. Muchow, “High-Quartz Solid Solution Phases from Thermally Crystallized Glasses of Compositions (Li2O, MgO) · Al2-nSiO2” J. Am. Ceram. Soc., 51(12) 678–682 (1968).CrossRefGoogle Scholar
  34. 34.
    D. R. Stewart, “Thermal Stability of Low Expansion Glass-Ceramic Materials,” pp. 2-6, Preprint Volume, A.I. Ch.E. 67 National Meeting, Feb. 15-18, 1970.Google Scholar
  35. 35.
    W. S. Schreyer and J. F. Schairer, “Metastable Solid Solutions with Quartz-Type Structures on the Join SiO2-MgA12O3,” Z. Krist., 116(1-2) 60–82 (1961).CrossRefGoogle Scholar
  36. 36.
    D. L. Evans, “Crystallization of Carnegieite in a CdO-TiO2 Nucleated Glass,” Physics of Non-Crystalline Solids, 57–66, North-Holland Pub. Co., Amsterdam, 1965.Google Scholar
  37. 37.
    W. Sach and H. Scheidler, “Effects of the Nucleating Agents TiO2 and ZrO2 on Crystal Phases Formed during Development of Glass-Ceramics,” Glastech. Ber., 39(3) 126–130 (1966).Google Scholar
  38. 38.
    W. E. Smith, U. S. Patent 3,380,818, April 30, 1968; personal communication.Google Scholar
  39. 39.
    G. A. Simmons, “Development of Low-Expansion Glass-Ceramic Materials,” Opt. Spectra, 1(2) 25–29 (April–May–June, 1967).Google Scholar
  40. 40.
    P. W. McMillan, B. P. Hodgson, and G. Partridge, “Sealing Glass-Ceramics to Metals. Part 1,” Glass Technol., 7 121–127 (1966). Part 2 (with H. R. Heap), Ibid., pp. 128-122.Google Scholar
  41. 41.
    G. H. Beall and D. A. Duke, “Transparent Glass-Ceramics,” J. Mater. Sci., 4 340–353 (1969).CrossRefGoogle Scholar
  42. 42.
    N. F. Borelli, “Electro-Optic Effect in Transparent Niobate Glass-Ceramic Systems,” J. Appl. Phys., 38(11) 4243–4247 (1967).CrossRefGoogle Scholar
  43. 43.
    M. Watanabe, R. V. Caporali, and R. E. Mould, “The Effect of Heat Treatment on the Strength and Abrasion Resistance of a Glass-Ceramic Material,” pp. 23–28, Symposium on Nucleation and Crystallization in Glasses and Melts, Am. Ceram. Soc., Columbus, Ohio, 1962.Google Scholar
  44. 44.
    T. Kanbara and M. Tashiro, “Effects of Addition of Fluorine on the Surface Structure of Glass-Ceramics,” J. Ceram. Assoc. JaDan, 76(11) 23–31 (1968).Google Scholar
  45. 45.
    K. M. Henry and W. E. Smith, U. S. Patent 3, 117, 881, Jan. 14, 1964.Google Scholar
  46. 46.
    S. D. Stookey, U. S. Patent 3, 231,399, Jan. 25, 1966.Google Scholar
  47. 47.
    D. A. Duke, J. E. Megles, J. F. MacDowell, and H. R. Bopp, “Strengthening Glass-Ceramics by Application of Compressive Glazes,” J. Am. Ceram. Soc., 51(2) 98–102 (1968).CrossRefGoogle Scholar
  48. 48.
    D. A. Duke, J. F. MacDowell, and B. R. Karstetter, “Crystallization and Chemical Strengthening of Nepheline Glass-Ceramics,” J. Am. Ceram. Soc., 50(2) 67–74 (1967).CrossRefGoogle Scholar
  49. 49.
    B. R. Karstetter and R. O. Voss, “Chemical Strengthening of Glass-Ceramics in the System Li2O-Al2O3-SiO2”, J. Am. Ceram. Soc., 50(3) 133–137 (1967).CrossRefGoogle Scholar
  50. 50.
    G. H. Beall, B. R. Karstetter, and H. L. Rittler, “Crystallization and Chemical Strengthening of Stuffed β-Quartz Glass-Ceramics”, J. Am. Ceram. Soc., 50(4) 181–190 (1967).CrossRefGoogle Scholar
  51. 51.
    M. M. Layton and A. Herczog, “Nucleation and Crystallization of NaNbO3 from Glasses in the Na2O-Nb2O5-SiO2 System,” J. Am. Ceram. Soc., 50(7) 369–375 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Daniel R. Stewart
    • 1
  1. 1.Owens-IllinoisToledoUSA

Personalised recommendations